Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of 0xtan1x(1+x2)2\int\limits_{0}^{\infty} \frac {x\,\tan^{-1}x} {(1+x^2)^2} dx is

A

π2\frac {\pi} {2}

B

π4\frac {\pi} {4}

C

π6\frac {\pi} {6}

D

π8\frac {\pi} {8}

Answer

π8\frac {\pi} {8}

Explanation

Solution

Put x=tanzx = tan\, z, dx=sec2zdzdx = sec^{2} z \, dz when x=0x = 0 ; when x=,z=π/2x=\infty, z=\pi /2 \therefore given integral =0π/2(tanz)(1+tan2z)2sec2zdz=\int\limits_{0}^{\pi /2} \frac{\left(tan\, z\right)}{\left(1+tan^{2}\,z\right)^{2}} sec^{2} \, z \, dz =0π/2ztanzsec2zdz=\int\limits_{0}^{\pi /2} \frac{z\, tan \,z}{sec^{2}\,z} dz =0π/2zsinzcoszcos2zdz=\int\limits^{\pi /2}_{0} z \frac{sin\,z}{cos \, z} cos^{2} z\, dz =0π/2zsinzcoszdz=\int\limits_{0}^{\pi /2} z\, sin \, z\, cos\, z\, dz =120π/2z(sin2z)dz=\frac{1}{2} \int\limits_{0}^{\pi /2}z\left(sin\,2z\right)dz =12[z(cos2z2)0π/20π/2(1)(cos2z2)dz]=\frac{1}{2}\left[\left|z-\left(-\frac{cos\,2z}{2}\right)\right|_{0}^{\pi /2}-\int_{0}^{\pi /2}\left(1\right)\left(-\frac{cos\,2z}{2}\right)dz\right] =12[π4cosπ+12sin2z20π/2]=\frac{1}{2}\left[-\frac{\pi}{4}cos\,\pi+\frac{1}{2} \left|\frac{sin\, 2z}{2}\right|_{0}^{\pi /2}\right] =12[π4+0]=\frac{1}{2} \left[\frac{\pi}{4}+0\right] =π8=\frac{\pi}{8}