Solveeit Logo

Question

Question: The value of \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x...

The value of 0π2xsinxcosxsin4x+cos4xdx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} \,dx is
A. π24\dfrac{{{\pi ^2}}}{4}
B. π28\dfrac{{{\pi ^2}}}{8}
C. π232\dfrac{{{\pi ^2}}}{{32}}
D. 3π216\dfrac{{3{\pi ^2}}}{{16}}

Explanation

Solution

Hint : Here the question is related to the integration. The integral is of the form of definite integral where the limit points are mentioned. The function for the integration is trigonometric function to integrate the function we solve by the substitution method. Hence we obtain the required solution for the given question.

Complete step by step solution:
Now consider the given integral as I
I=0π2xsinxcosxsin4x+cos4xdxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} \,dx ---------- (1)
Now replace the x by (π2x)\left( {\dfrac{\pi }{2} - x} \right)
So it can be written as
I=0π2(π2x)sin(π2x)cos(π2x)sin4(π2x)+cos4(π2x)dxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\sin \left( {\dfrac{\pi }{2} - x} \right)\cos \left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}} \,dx
As we know that cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x and sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x
Therefore the above equation can be written as
I=0π2(π2x)cosxsinxcos4x+sin4xdxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\left( {\dfrac{\pi }{2} - x} \right)\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx ------ (2)
On adding the equation (1) and (2) we get 2I=π20π2cosxsinxcos4x+sin4xdx \Rightarrow 2I = \dfrac{\pi }{2}\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x\sin x}}{{{{\cos }^4}x + {{\sin }^4}x}}} \,dx
Put sin2x=t{\sin ^2}x = t , on differentiating this function we get 2sinxcosxdx=dt2\sin x\cos xdx = dt . When the function changes the limit points will also change
When x = 0 then t = 0 and when x=π2x = \dfrac{\pi }{2} then t = 1
Therefore the above equation can be written as
2I=π2×1201dt(1t)2+t2\Rightarrow 2I = \dfrac{\pi }{2} \times \dfrac{1}{2}\int\limits_0^1 {\dfrac{{dt}}{{{{(1 - t)}^2} + {t^2}}}} \,
On simplifying we get
2I=π401dt1+t22t+t2\Rightarrow 2I = \dfrac{\pi }{4}\int\limits_0^1 {\dfrac{{dt}}{{1 + {t^2} - 2t + {t^2}}}} \,
Take 2 to RHS we get
I=π801dt1+2t22t\Rightarrow I = \dfrac{\pi }{8}\int\limits_0^1 {\dfrac{{dt}}{{1 + 2{t^2} - 2t}}} \,
Simplify the denominator
I=π1601dt12+t2t\Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{\dfrac{1}{2} + {t^2} - t}}} \,
The denominator term can be replaced by (t12)2+14{\left( {t - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4} , so the equation or integral can be written as
I=π1601dt(t12)2+14\Rightarrow I = \dfrac{\pi }{{16}}\int\limits_0^1 {\dfrac{{dt}}{{{{\left( {t - \dfrac{1}{2}} \right)}^2} + \dfrac{1}{4}}}} \,
On applying integration we have
I=π16×112tan1(t1212)01\left. { \Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{{\tan }^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)} \right|_0^1
Apply the limit points we get
I=π16×112tan1((10)1212)\Rightarrow I = \dfrac{\pi }{{16}} \times \dfrac{1}{{\dfrac{1}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{(1 - 0) - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)
On simplifying we get
I=π8tan1(11212)\Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{1 - \dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)
I=π8tan1(1212)\Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2}}}{{\dfrac{1}{2}}}} \right)
Since the numerator and the denominator is same we cancel them
I=π8tan1(1)\Rightarrow I = \dfrac{\pi }{8}{\tan ^{ - 1}}\left( 1 \right)
The value of tan1(1)=π4{\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4} , therefore we get
I=π8×π4\Rightarrow I = \dfrac{\pi }{8} \times \dfrac{\pi }{4}
On simplification
I=π232\Rightarrow I = \dfrac{{{\pi ^2}}}{{32}}
Hence we have obtained the solution
The option C is the correct one
So, the correct answer is “Option C”.

Note : By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.