Solveeit Logo

Question

Question: The value of \[\int\limits_{0}^{2x}{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\] where [t] de...

The value of 02x[sin2x(1+cos3x)]dx\int\limits_{0}^{2x}{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx} where [t] denotes the greatest integer function, is:
(a)2π\left( a \right)-2\pi
(b)π\left( b \right)\pi
(c)π\left( c \right)-\pi
(d)2π\left( d \right)2\pi

Explanation

Solution

We have to find the integral of [sin2x(1+cos3x)]\left[ \sin 2x\left( 1+\cos 3x \right) \right] and we will start by splitting the limit [0,2π]\left[ 0,2\pi \right] as [0,π]\left[ 0,\pi \right] and [π,2π].\left[ \pi ,2\pi \right]. Then we will name the integral 0π[sin2x(1+cos3x)]dx\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx} as I1{{I}_{1}} and I2=02π[sin2x(1+cos3x)]dx.{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}. Then we will simplify I2{{I}_{2}} and we get I2{{I}_{2}} as 0π[sin2x(1+cos3x)]dx\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx} and then we use [x] + [– x] = – 1 to simplify and get the integral to get the solution.

Complete step-by-step answer:
We are asked to find the integral of [sin2x(1+cos3x)]\left[ \sin 2x\left( 1+\cos 3x \right) \right] on the interval from 0 to 2π.2\pi . We will firstly split our interval [0,2π]\left[ 0,2\pi \right] as [0,π]\left[ 0,\pi \right] and [π,2π].\left[ \pi ,2\pi \right]. So,
I=02π[sin2x(1+cos3x)]dxI=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}
Becomes
I=0π[sin2x(1+cos3x)]dx+π2π[sin2x(1+cos3x)]dxI=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{\pi }^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}
Now, let I1=0π[sin2x(1+cos3x)]dx{{I}_{1}}=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx} and I2=02π[sin2x(1+cos3x)]dx.{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}.
So, we have
I=I1+I2I={{I}_{1}}+{{I}_{2}}
First, we will simplify I2.{{I}_{2}}.
We have,
I2=02π[sin2x(1+cos3x)]dx{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}
To solve this integral, we will substitute x as 2πt.2\pi -t.
x=2πt\Rightarrow x=2\pi -t
Now, dx will become
dx=0dt\Rightarrow dx=0-dt
dx=dt\Rightarrow dx=-dt
Now our earlier limit was x=πx=\pi to x=2π.x=2\pi . Now, they change in t as,
t=2πxt=2\pi -x
This means, x=πx=\pi becomes t=π.t=\pi .
While, x=2πx=2\pi becomes t = 0. Hence, our integral becomes
I2=02π[sin2x(1+cos3x)]dx{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}
I2=π0[sin2(2πt)(1+cos3(2πt))]dt\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin 2\left( 2\pi -t \right)\left( 1+\cos 3\left( 2\pi -t \right) \right) \right]dt}
Simplifying, we get,
I2=π0[sin(4π2t)(1+cos(6π3t))]dt\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( 4\pi -2t \right)\left( 1+\cos \left( 6\pi -3t \right) \right) \right]dt}
Now as we know that sin(2πθ)=sin(θ)\sin \left( 2\pi -\theta \right)=\sin \left( -\theta \right) and cos(2nπθ)=cos(θ).\cos \left( 2n\pi -\theta \right)=\cos \left( \theta \right). So, we get,
I2=π0[sin(2t)(1+cos(3t))]dt\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( -2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}
Now, sin (– x) = – sin x. So,
I2=π0[sin(2t)(1+cos(3t))]dt\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin \left( 2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}
Now changing t as x, we get,
I2=π0[sin2x(1+cos3x)]dx\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}
We know that, abdx=badx.-\int\limits_{a}^{b}{dx}=\int\limits_{b}^{a}{dx}. So, we get,
I2=0π[sin2x(1+cos3x)]dx\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}
Now, putting this back in the value of I, we get,
I=I1+I2I={{I}_{1}}+{{I}_{2}}
I=0π[sin2x(1+cos3x)]dx+0π[sin2x(1+cos3x)]dxI=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}
Now, we know that,
[x]+[x]=1 xI\left[ x \right]+\left[ -x \right]=-1\text{ }\forall x\notin I
We will take, x=sin2x(1+cos3x),x=\sin 2x\left( 1+\cos 3x \right), we get,
I=0π[x]dx+0π[x]dxI=\int\limits_{0}^{\pi }{\left[ x \right]dx}+\int\limits_{0}^{\pi }{\left[ -x \right]dx}
I=0π([x]+[x])dxI=\int\limits_{0}^{\pi }{\left( \left[ x \right]+\left[ -x \right] \right)dx}
So, using [x]+[x]=1,\left[ x \right]+\left[ -x \right]=-1, we get,
I=0π(1)dxI=\int\limits_{0}^{\pi }{\left( -1 \right)dx}
I=(x)0πI=\left( -x \right)_{0}^{\pi }
Putting the limit, we get,
I=π(0)I=-\pi -\left( -0 \right)
I=πI=-\pi

So, the correct answer is “Option c”.

Note: Remember for x=2πt,x=2\pi -t, we get dx=dtdx=-dt as we differentiate both the sides, we get,
dx=d(2πt)dx=d\left( 2\pi -t \right)
As derivative of the constant is 0.
dx=d(2π)dt\Rightarrow dx=d\left( 2\pi \right)-dt
So,
dx=dtdx=-dt
Also, when the limit is the same, we can add integral that is why we add I1{{I}_{1}} and I2.{{I}_{2}}.
I=0π[sin2x(1+cos3x)]dx+0π[sin2x(1+cos3x)]dxI=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}
As the limit is the same, so it can be added up.