Solveeit Logo

Question

Question: The value of \(\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx}\) is equal to A. 0 B. \(\dfra...

The value of 01sin(2πx)dx\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx} is equal to
A. 0
B. 1π\dfrac{-1}{\pi }
C. 1π\dfrac{1}{\pi }
D. 2π\dfrac{2}{\pi }

Explanation

Solution

Hint: According to definition of absolute value function f(x)=xf(x)=\left| x \right| we can write
f(x)=xf(x)=x when x0x\ge 0
f(x)=xf(x)=-x when x<0x<0
And also we can usesin(x)dx=cos(x)\int{\sin (x)dx=-\cos (x)}

Complete step-by-step answer:
Given integral is 01sin(2πx)dx\int\limits_{0}^{1}{\left| \sin (2\pi x) \right|dx}
For 0x120\le x\le \dfrac{1}{2} , sin(2πx)>0\sin (2\pi x)>0
For 12x1\dfrac{1}{2}\le x\le 1, sin(2πx)<0\sin (2\pi x)<0
Hence we can write integral as
01sin(2πx)dx=01/2sin(2πx)dx+1/21sin(2πx)dx\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}
Now calculate sin(2πx)dx\int{\sin (2\pi x)dx}
Let 2πx=t2\pi x=t
On differentiating
2πdx=dt2\pi dx=dt
dx=dt2πdx=\dfrac{dt}{2\pi }
Hence integral is
sin(2πx)dx=12πsin(t)dt\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{1}{2\pi }\int{\sin (t)dt}
sin(2πx)dx=cos(t)2π\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (t)}{2\pi }
On substituting 2πx=t2\pi x=t
sin(2πx)dx=cos(2πx)2π\Rightarrow \int{\sin (2\pi x)dx}=\dfrac{-\cos (2\pi x)}{2\pi }
As we have 01sin(2πx)dx=01/2sin(2πx)dx+1/21sin(2πx)dx\int\limits_{0}^{1}{\sin (2\pi x)dx=\int\limits_{0}^{{}^{1}/{}_{2}}{\sin (2\pi x)dx}}+\int\limits_{{}^{1}/{}_{2}}^{1}{-\sin (2\pi x)dx}
After substituting value of sin(2πx)dx\int{\sin (2\pi x)dx}
01sin(2πx)dx=[cos(2πx)2π]01/2+[cos(2πx)2π]1/21\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (2\pi x)}{2\pi } \right]_{0}^{{}^{1}/{}_{2}}}+\left[ \dfrac{\cos (2\pi x)}{2\pi } \right]_{{}^{1}/{}_{2}}^{1}
01sin(2πx)dx=[cos(π)2π+cos(0)2π]+[cos(2π)2πcos(π)2π]\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-\cos (\pi )}{2\pi }+\dfrac{\cos (0)}{2\pi } \right]}+\left[ \dfrac{\cos (2\pi )}{2\pi }-\dfrac{\cos (\pi )}{2\pi } \right]
01sin(2πx)dx=[(1)2π+12π]+[12π(1)2π]\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{-(-1)}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }-\dfrac{(-1)}{2\pi } \right].
01sin(2πx)dx=[12π+12π]+[12π+12π]\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]}+\left[ \dfrac{1}{2\pi }+\dfrac{1}{2\pi } \right]
01sin(2πx)dx=22π+22π\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{2\pi }+}\dfrac{2}{2\pi }
01sin(2πx)dx=42π\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{4}{2\pi }}
01sin(2πx)dx=2π\Rightarrow \int\limits_{0}^{1}{\sin (2\pi x)dx=\dfrac{2}{\pi }}
Hence option D is correct.

Note: In above question we need to classify range of x very carefully.
We can understand it from graph of sin(x) as below:

As from 0 to π\pi , sin(x) is positive and from π\pi to 2π2\pi
That’s we classify range as below:
For 0x120\le x\le \dfrac{1}{2} , sin(2πx)>0\sin (2\pi x)>0