Question
Question: The value of $\int \frac{dx}{\sec x + \operatorname{cosec} x}$, is equal to...
The value of ∫secx+cosecxdx, is equal to

{(sinx+cosx)+21logtanx/2−1+2tanx/2−1−2}+C
2{(sinx+cosx)+21logtanx/2−1+2tanx/2−1−2}+C
21{(sinx−cosx)+21logtanx/2−1+2tanx/2−1−2}+C
None of these
21{(sinx−cosx)+21logtanx/2−1+2tanx/2−1−2}+C
Solution
To evaluate the integral I=∫secx+cosecxdx, we first rewrite the integrand in terms of sinx and cosx:
secx+cosecx1=cosx1+sinx11=sinxcosxsinx+cosx1=sinx+cosxsinxcosxSo the integral becomes:
I=∫sinx+cosxsinxcosxdxWe use the identity 2sinxcosx=(sinx+cosx)2−1. Let u=sinx+cosx. Then sinxcosx=2u2−1. Substituting this into the integral:
I=∫u2u2−1dx=21∫(uu2−1)dx=21∫(u−u1)dxSubstitute back u=sinx+cosx:
I=21∫((sinx+cosx)−sinx+cosx1)dxThis integral can be split into two parts:
I=21∫(sinx+cosx)dx−21∫sinx+cosx1dxLet's evaluate each part. Part 1: 21∫(sinx+cosx)dx=21(−cosx+sinx)+C1=21(sinx−cosx)+C1.
Part 2: −21∫sinx+cosx1dx. To evaluate ∫sinx+cosx1dx, we use the half-angle substitution t=tan(x/2). Then sinx=1+t22t, cosx=1+t21−t2, and dx=1+t22dt.
∫sinx+cosx1dx=∫1+t22t+1+t21−t21⋅1+t22dt =∫2t+1−t21+t2⋅1+t22dt=∫1+2t−t22dtThe denominator can be rewritten by completing the square:
1+2t−t2=−(t2−2t−1)=−((t−1)2−1−1)=−((t−1)2−2)=2−(t−1)2So the integral becomes:
∫2−(t−1)22dtThis is of the form ∫a2−x2kdx=2akloga−xa+x. Here, k=2, a2=2⟹a=2, and x=(t−1).
∫2−(t−1)22dt=2⋅221log2−(t−1)2+(t−1)+C2 =21log−t+1+2t−1+2+C2Now, substitute this back into Part 2:
−21[21log−t+1+2t−1+2]+C3Using the property log∣A/B∣=−log∣B/A∣:
=221logt−1+2−t+1+2+C3To match the options, we need to manipulate the argument of the logarithm. Let's rewrite the argument in the options:
tanx/2−1+2tanx/2−1−2=t−(1−2)t−(1+2)Let's see if we can get this form from our result. Our result is 21log−t+1+2t−1+2. Let's multiply the numerator and denominator by −1:
21log−(t−1−2)−(1−t−2)=21logt−1−21−t−2This is the integral of sinx+cosx1. So, the total integral is:
I=21(sinx−cosx)−21[21logtan(x/2)−1−21−t−2]+C I=21(sinx−cosx)−221logtan(x/2)−1−21−tan(x/2)−2+CThe options use logtanx/2−1+2tanx/2−1−2.
Combining the two parts:
I=21(sinx−cosx)+221logtanx/2−1+2tanx/2−1−2+CThis can be written as:
I=21{(sinx−cosx)+21logtanx/2−1+2tanx/2−1−2}+CThis matches option (c).