Solveeit Logo

Question

Question: The value of $\int \frac{dx}{\sec x + \operatorname{cosec} x}$, is equal to...

The value of dxsecx+cosecx\int \frac{dx}{\sec x + \operatorname{cosec} x}, is equal to

A

{(sinx+cosx)+12logtanx/212tanx/21+2}+C\left\{(\sin x + \cos x) + \frac{1}{\sqrt{2}}\log \left|\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}}\right|\right\} + C

B

2{(sinx+cosx)+12logtanx/212tanx/21+2}+C2\left\{(\sin x + \cos x) + \frac{1}{\sqrt{2}}\log \left|\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}}\right|\right\} + C

C

12{(sinxcosx)+12logtanx/212tanx/21+2}+C\frac{1}{2}\left\{(\sin x - \cos x) + \frac{1}{\sqrt{2}}\log \left|\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}}\right|\right\} + C

D

None of these

Answer

12{(sinxcosx)+12logtanx/212tanx/21+2}+C\frac{1}{2}\left\{(\sin x - \cos x) + \frac{1}{\sqrt{2}}\log \left|\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}}\right|\right\} + C

Explanation

Solution

To evaluate the integral I=dxsecx+cosecxI = \int \frac{dx}{\sec x + \operatorname{cosec} x}, we first rewrite the integrand in terms of sinx\sin x and cosx\cos x:

1secx+cosecx=11cosx+1sinx=1sinx+cosxsinxcosx=sinxcosxsinx+cosx\frac{1}{\sec x + \operatorname{cosec} x} = \frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}} = \frac{1}{\frac{\sin x + \cos x}{\sin x \cos x}} = \frac{\sin x \cos x}{\sin x + \cos x}

So the integral becomes:

I=sinxcosxsinx+cosxdxI = \int \frac{\sin x \cos x}{\sin x + \cos x} dx

We use the identity 2sinxcosx=(sinx+cosx)212 \sin x \cos x = (\sin x + \cos x)^2 - 1. Let u=sinx+cosxu = \sin x + \cos x. Then sinxcosx=u212\sin x \cos x = \frac{u^2 - 1}{2}. Substituting this into the integral:

I=u212udx=12(u21u)dx=12(u1u)dxI = \int \frac{\frac{u^2 - 1}{2}}{u} dx = \frac{1}{2} \int \left( \frac{u^2 - 1}{u} \right) dx = \frac{1}{2} \int \left( u - \frac{1}{u} \right) dx

Substitute back u=sinx+cosxu = \sin x + \cos x:

I=12((sinx+cosx)1sinx+cosx)dxI = \frac{1}{2} \int \left( (\sin x + \cos x) - \frac{1}{\sin x + \cos x} \right) dx

This integral can be split into two parts:

I=12(sinx+cosx)dx121sinx+cosxdxI = \frac{1}{2} \int (\sin x + \cos x) dx - \frac{1}{2} \int \frac{1}{\sin x + \cos x} dx

Let's evaluate each part. Part 1: 12(sinx+cosx)dx=12(cosx+sinx)+C1=12(sinxcosx)+C1\frac{1}{2} \int (\sin x + \cos x) dx = \frac{1}{2} (-\cos x + \sin x) + C_1 = \frac{1}{2} (\sin x - \cos x) + C_1.

Part 2: 121sinx+cosxdx-\frac{1}{2} \int \frac{1}{\sin x + \cos x} dx. To evaluate 1sinx+cosxdx\int \frac{1}{\sin x + \cos x} dx, we use the half-angle substitution t=tan(x/2)t = \tan(x/2). Then sinx=2t1+t2\sin x = \frac{2t}{1+t^2}, cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}, and dx=2dt1+t2dx = \frac{2 dt}{1+t^2}.

1sinx+cosxdx=12t1+t2+1t21+t22dt1+t2\int \frac{1}{\sin x + \cos x} dx = \int \frac{1}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}} \cdot \frac{2 dt}{1+t^2} =1+t22t+1t22dt1+t2=2dt1+2tt2= \int \frac{1+t^2}{2t + 1 - t^2} \cdot \frac{2 dt}{1+t^2} = \int \frac{2 dt}{1+2t-t^2}

The denominator can be rewritten by completing the square:

1+2tt2=(t22t1)=((t1)211)=((t1)22)=2(t1)21+2t-t^2 = -(t^2 - 2t - 1) = -((t-1)^2 - 1 - 1) = -((t-1)^2 - 2) = 2 - (t-1)^2

So the integral becomes:

2dt2(t1)2\int \frac{2 dt}{2 - (t-1)^2}

This is of the form ka2x2dx=k2aloga+xax\int \frac{k}{a^2 - x^2} dx = \frac{k}{2a} \log \left| \frac{a+x}{a-x} \right|. Here, k=2k=2, a2=2    a=2a^2=2 \implies a=\sqrt{2}, and x=(t1)x=(t-1).

2dt2(t1)2=2122log2+(t1)2(t1)+C2\int \frac{2 dt}{2 - (t-1)^2} = 2 \cdot \frac{1}{2\sqrt{2}} \log \left| \frac{\sqrt{2} + (t-1)}{\sqrt{2} - (t-1)} \right| + C_2 =12logt1+2t+1+2+C2= \frac{1}{\sqrt{2}} \log \left| \frac{t-1+\sqrt{2}}{-t+1+\sqrt{2}} \right| + C_2

Now, substitute this back into Part 2:

12[12logt1+2t+1+2]+C3-\frac{1}{2} \left[ \frac{1}{\sqrt{2}} \log \left| \frac{t-1+\sqrt{2}}{-t+1+\sqrt{2}} \right| \right] + C_3

Using the property logA/B=logB/A\log|A/B| = -\log|B/A|:

=122logt+1+2t1+2+C3= \frac{1}{2\sqrt{2}} \log \left| \frac{-t+1+\sqrt{2}}{t-1+\sqrt{2}} \right| + C_3

To match the options, we need to manipulate the argument of the logarithm. Let's rewrite the argument in the options:

tanx/212tanx/21+2=t(1+2)t(12)\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}} = \frac{t - (1+\sqrt{2})}{t - (1-\sqrt{2})}

Let's see if we can get this form from our result. Our result is 12logt1+2t+1+2\frac{1}{\sqrt{2}} \log \left| \frac{t-1+\sqrt{2}}{-t+1+\sqrt{2}} \right|. Let's multiply the numerator and denominator by 1-1:

12log(1t2)(t12)=12log1t2t12\frac{1}{\sqrt{2}} \log \left| \frac{-(1-t-\sqrt{2})}{-(t-1-\sqrt{2})} \right| = \frac{1}{\sqrt{2}} \log \left| \frac{1-t-\sqrt{2}}{t-1-\sqrt{2}} \right|

This is the integral of 1sinx+cosx\frac{1}{\sin x + \cos x}. So, the total integral is:

I=12(sinxcosx)12[12log1t2tan(x/2)12]+CI = \frac{1}{2} (\sin x - \cos x) - \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \log \left| \frac{1-t-\sqrt{2}}{\tan(x/2)-1-\sqrt{2}} \right| \right] + C I=12(sinxcosx)122log1tan(x/2)2tan(x/2)12+CI = \frac{1}{2} (\sin x - \cos x) - \frac{1}{2\sqrt{2}} \log \left| \frac{1-\tan(x/2)-\sqrt{2}}{\tan(x/2)-1-\sqrt{2}} \right| + C

The options use logtanx/212tanx/21+2\log \left|\frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}}\right|.

Combining the two parts:

I=12(sinxcosx)+122logtanx/212tanx/21+2+CI = \frac{1}{2} (\sin x - \cos x) + \frac{1}{2\sqrt{2}} \log \left| \frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}} \right| + C

This can be written as:

I=12{(sinxcosx)+12logtanx/212tanx/21+2}+CI = \frac{1}{2} \left\{ (\sin x - \cos x) + \frac{1}{\sqrt{2}} \log \left| \frac{\tan x/2 - 1 - \sqrt{2}}{\tan x/2 - 1 + \sqrt{2}} \right| \right\} + C

This matches option (c).