Solveeit Logo

Question

Mathematics Question on Application of Integrals

The value of π6π3dx1+tan18x\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \tan^{18}x} is:

A

π4\frac{\pi}{4}

B

π12\frac{\pi}{12}

C

π9\frac{\pi}{9}

D

π6\frac{\pi}{6}

Answer

π12\frac{\pi}{12}

Explanation

Solution

The given integral is:

π6π3dx1+tan18x.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}.

Let us simplify the denominator 1+tan18x1+\tan^{18}x. The integral's limits are symmetric about π4\frac{\pi}{4}, and we use the property of symmetry for trigonometric functions:

f(x)=11+tan18xf(x)=\frac{1}{1+\tan^{18}x}

Using the property tan(π2x)=cot(x)\tan(\frac{\pi}{2}-x)=\cot(x):

f(π2x)=11+cot18x.f(\frac{\pi}{2}-x)=\frac{1}{1+\cot^{18}x}.

Adding both expressions:

f(x)+f(π2x)=11+tan18x+11+cot18x.f(x)+f(\frac{\pi}{2}-x)=\frac{1}{1+\tan^{18}x}+\frac{1}{1+\cot^{18}x}.

Simplify 1+cot18x=tan18x+1tan18x1+\cot^{18}x=\frac{\tan^{18}x+1}{\tan^{18}x}:

f(x)+f(π2x)=tan18xtan18x+1+1tan18x+1=1.f(x)+f(\frac{\pi}{2}-x)=\frac{\tan^{18}x}{\tan^{18}x+1}+\frac{1}{\tan^{18}x+1}=1.

Thus, the integral becomes:

π6π3dx1+tan18x=12π6π31 dx.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}=\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1~dx.

Evaluate the integral:

π6π31 dx=[x]π6π3=π3π6=π6.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1~dx=[x]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}.

Thus:

π6π3dx1+tan18x=12×π6=π12.\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\tan^{18}x}=\frac{1}{2}\times \frac{\pi}{6}=\frac{\pi}{12}.

Final Answer:

π12\frac{\pi}{12}