Question
Mathematics Question on Application of Integrals
The value of ∫6π3π1+tan18xdx is:
A
4π
B
12π
C
9π
D
6π
Answer
12π
Explanation
Solution
The given integral is:
∫6π3π1+tan18xdx.
Let us simplify the denominator 1+tan18x. The integral's limits are symmetric about 4π, and we use the property of symmetry for trigonometric functions:
f(x)=1+tan18x1
Using the property tan(2π−x)=cot(x):
f(2π−x)=1+cot18x1.
Adding both expressions:
f(x)+f(2π−x)=1+tan18x1+1+cot18x1.
Simplify 1+cot18x=tan18xtan18x+1:
f(x)+f(2π−x)=tan18x+1tan18x+tan18x+11=1.
Thus, the integral becomes:
∫6π3π1+tan18xdx=21∫6π3π1 dx.
Evaluate the integral:
∫6π3π1 dx=[x]6π3π=3π−6π=6π.
Thus:
∫6π3π1+tan18xdx=21×6π=12π.
Final Answer:
12π