Question
Mathematics Question on integral
The value of ∫−2π2π(x3+xcosx+tan5x+1)dx is
A
0
B
2
C
π
D
1
Answer
π
Explanation
Solution
Let I=∫−2π2π(x3+xcosx+tan5x+1)dx
⇒I=∫−2π2πx3+dx+∫−2π2πcosx+∫−2π2πtan5xdx+∫−2π2π1. dx
It is known that if f(x)is an even function,then∫−aaƒ(x)dx=2∫0aƒ(x)dx and
if f(x)is an odd function,then∫a-aƒ(x)dx=0
I=0+0+0+2∫02π1.dx
=2[x]22π
=22π
=π
Hence,the correct Answer is C.