Solveeit Logo

Question

Mathematics Question on integral

The value of π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x3+xcosx+tan5x+1)dx is

A

0

B

2

C

π\pi

D

1

Answer

π\pi

Explanation

Solution

Let I=π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x3+xcosx+tan5x+1)dx

⇒I=π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x3+dx+π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}cosx+π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}tan5xdx+π2π2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}1. dx

It is known that if f(x)is an even function,thenaa\int_{-a}^{a}ƒ(x)dx=20a\int_{0}^{a}ƒ(x)dx and

if f(x)is an odd function,then∫a-aƒ(x)dx=0

I=0+0+0+20π2\int_{0}^{\frac{\pi}{2}}1.dx

=2[x]2π2^{\frac{\pi}{2}}_{2}

=2π2\frac{2\pi}{2}

=π\pi

Hence,the correct Answer is C.