Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of e6logxe5logxe4logxe3logxdx\int \frac{e^{6 \log x} -e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} dx is equal to

A

0+C0 + C

B

x33+C\frac {x^3}{3} + C

C

3x3+C\frac {3}{x^3} +C

D

1x+C\frac {1}{x} +C

Answer

x33+C\frac {x^3}{3} + C

Explanation

Solution

Let I=e6logxe5logxe4logxe3logxdxI =\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x
=x6x5x4x3dx[eylogx=xy]=\int \frac{x^{6}-x^{5}}{x^{4}-x^{3}} d x \left[\because e^{y \log x}=x^{y}\right]
=x5(x1)x3(x1)dx=x2dx=\int \frac{x^{5}(x-1)}{x^{3}(x-1)} d x=\int x^{2} d x
=x33+C=\frac{x^{3}}{3}+C