Question
Mathematics Question on Methods of Integration
The value of ∫e4logx−e3logxe6logx−e5logxdx is equal to
A
0+C
B
3x3+C
C
x33+C
D
x1+C
Answer
3x3+C
Explanation
Solution
Let I=∫e4logx−e3logxe6logx−e5logxdx
=∫x4−x3x6−x5dx[∵eylogx=xy]
=∫x3(x−1)x5(x−1)dx=∫x2dx
=3x3+C