Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of 2+sinx1+cosxex/2dx\int{\frac{2+\sin x}{1+\cos x}}\,{{e}^{x/2}}dx is

A

2.ex/2tanx2+C2.{{e}^{x/2}}\,\tan \frac{x}{2}+C

B

ex/2tanx+C{{e}^{x/2}}\,\tan \,x+C

C

12ex/2sinx+C\frac{1}{2}{{e}^{x/2}}\,\sin x+C

D

12ex/2sinx2+C\frac{1}{2}\,\,{{e}^{x/2}}\,\sin \frac{x}{2}+C

Answer

2.ex/2tanx2+C2.{{e}^{x/2}}\,\tan \frac{x}{2}+C

Explanation

Solution

Let l=2+sinx1+cosx.ex/2dxl=\int{\frac{2+\sin x}{1+\cos x}}.\,\,{{e}^{x/2}}\,dx
\Rightarrow l=2+2tanx/21+tan2x/21+1tan2x/21+tan2x/2.ex/2dxl=\int{\frac{2+\frac{2\,\tan \,x/2}{1+{{\tan }^{2}}x/2}}{1+\frac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2}}}\,.\,\,{{e}^{-x/2}}dx
\Rightarrow l=2tan2x2+2+2tanx21+tan2x2tan2x2+1.ex/2dxl=\frac{2{{\tan }^{2}}\frac{x}{2}+2+2\tan \frac{x}{2}}{1+{{\tan }^{2}}\frac{x}{2}-{{\tan }^{2}}\frac{x}{2}+1}\,\,.\,{{e}^{x/2}}\,dx
\Rightarrow l=2tan2x2+tanx2+12.ex/2dxl=2\int{\frac{{{\tan }^{2}}\frac{x}{2}+\tan \frac{x}{2}+1}{2}}.{{e}^{x/2}}\,\,dx
\Rightarrow l=tan2x2.ex/2dx+tanx2.ex/2dxl=\int{{{\tan }^{2}}\frac{x}{2}.{{e}^{x/2}}dx+\int{\tan \frac{x}{2}.{{e}^{x/2}}\,dx}}
+ex/2dx+\int{{{e}^{x/2}}\,\,dx}
\Rightarrow l=sec2IIx/2.ex/2dxl=\int{\underset{II}{\mathop{{{\sec }^{2}}}}\,}\,x/2.{{e}^{x/2}}\,dx
ex/2dx+tanx2.ex/2dx+ex/2dx-\int{{{e}^{x/2}}\,dx+\int{\tan \frac{x}{2}.{{e}^{x/2}}\,dx+\int{{{e}^{x/2}}\,dx}}}
\Rightarrow l=2ex/2.tanx212ex/2.tanx2.2dxl=2{{e}^{x/2}}.\tan \frac{x}{2}-\int{\frac{1}{2}{{e}^{x/2}}.\tan \frac{x}{2}.2dx}
+tanx2.ex/2dx+C+\int{\tan \,\frac{x}{2}.\,{{e}^{x/2}}\,dx+C}
\Rightarrow l=2ex/2.tanx2ex/2.tanx2dxl=2{{e}^{x/2}}.\tan \frac{x}{2}-\int{{{e}^{x/2}}.\tan \frac{x}{2}\,dx}
+ex/2.tanx2dx+C+\int{{{e}^{x/2}}.\tan \frac{x}{2}dx+C}
\Rightarrow l=2ex/2.tanx2+Cl=2{{e}^{x/2}}.\tan \frac{x}{2}+C