Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of 10x/210x10xdx\int \frac{10^{x/2}}{\sqrt{10^{-x} - 10^{x}}}dx is

A

1loge10sin1(10x)+c\frac{1}{\log_{e} 10} \sin^{-1} \left(10^{x} \right)+c

B

210x+10x+c2\sqrt{10^{-x} + 10^{x} } +c

C

1loge10sinh1(10x)+c\frac{1}{\log_{e} 10}\sinh^{-1} \left(10x\right)+c

D

1loge10sinh1(10x)+c\frac{-1}{\log_{e} 10}\sinh^{-1} \left(10x\right)+c

Answer

1loge10sin1(10x)+c\frac{1}{\log_{e} 10} \sin^{-1} \left(10^{x} \right)+c

Explanation

Solution

Let I=10x210x10xdx=10x21102x10xdxI =\int \frac{10^{\frac{x}{2}}}{\sqrt{10^{-x} -10^{x}} } dx = \int \frac{10^{\frac{x}{2}}}{\sqrt{\frac{1-10^{2x}}{10^{x}}}} dx
=10x2.10x21(10x)2dx=10x1(10x)2dx= \int \frac{10^{\frac{x}{2}} .10^{\frac{x}{2}}}{\sqrt{1-\left(10^{x}\right)^{2}}} dx = \int\frac{10^{x} }{\sqrt{1-\left(10^{x}\right)^{2}}}dx
Put 10x=t10xlog10dx=dt10^{x} =t \Rightarrow 10^{x} \log10 dx =dt
I=1log10dt1t2=1log10(sin1t)+c\therefore \, \, I = \frac{1}{\log 10} \int \frac{dt}{\sqrt{1-t^{2}} } = \frac{1}{\log 10}\left(\sin^{-1} t\right)+c
=1log10sin1(10x)+c= \frac{1}{\log 10}\sin^{-1} \left(10^{x}\right)+c