Question
Mathematics Question on Methods of Integration
The value of ∫10−x−10x10x/2dx is
A
loge101sin−1(10x)+c
B
210−x+10x+c
C
loge101sinh−1(10x)+c
D
loge10−1sinh−1(10x)+c
Answer
loge101sin−1(10x)+c
Explanation
Solution
Let I=∫10−x−10x102xdx=∫10x1−102x102xdx
=∫1−(10x)2102x.102xdx=∫1−(10x)210xdx
Put 10x=t⇒10xlog10dx=dt
∴I=log101∫1−t2dt=log101(sin−1t)+c
=log101sin−1(10x)+c