Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of ex(x5+5x4+1).dx\int e^x(x^5+5x^4+1).dx is

A

ex.x5+ex+Ce^x.x^5+e^x+C

B

ex.x5e^x.x^5

C

5x4.ex5x^4.e^x

D

ex+1.x5+Ce^{x+1}.x^5+C

Answer

ex.x5+ex+Ce^x.x^5+e^x+C

Explanation

Solution

Let I=ex(x5+5x4+1)dxI = \int e^{x} \left(x^{5} + 5x^{4} +1\right)dx
=exx5dx+5exx4dx+exdx= \int e^{x} x^{5} dx + 5 \int e^{x} x^{4} dx + \int e^{x} dx
=x5ex5x4exdx+5exx4dx+ex= x^{5} e^{x} - \int 5x^{4} e^{x} dx + 5 \int e^{x} x^{4} dx + e^{x}
=x5ex+ex+c=ex(x5+1)+c= x^{5} e^{x} + e^{x} + c = e^{x} \left(x^{5} + 1\right)+ c