Solveeit Logo

Question

Question: The value of \(\int {{e^{2x}}\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right)dx} \) is...

The value of e2x(1x12x2)dx\int {{e^{2x}}\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right)dx} is

Explanation

Solution

We will substitute 2x=t2x = t and will simplify the expression. Then, we will use the identity ex[f(x)+f(x)]dx=exf(x)+C\int {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]dx = {e^x}f\left( x \right) + C} to solve the integral. At last, substitute back the value of tt to get the final answer.

Complete step-by-step answer:
We have to evaluate the value of e2x(1x12x2)dx\int {{e^{2x}}\left( {\dfrac{1}{x} - \dfrac{1}{{2{x^2}}}} \right)dx} .
We will solve the required integral by substitution.
Let 2x=t2x = t, then dx=dt2dx = \dfrac{{dt}}{2}
Therefore, the given integral becomes,
et(1t212(t2)2)dt2 et(2t42t2)dt2 et(1t2t2)dt  \Rightarrow \int {{e^t}\left( {\dfrac{1}{{\dfrac{t}{2}}} - \dfrac{1}{{2{{\left( {\dfrac{t}{2}} \right)}^2}}}} \right)\dfrac{{dt}}{2}} \\\ \Rightarrow \int {{e^t}\left( {\dfrac{2}{t} - \dfrac{4}{{2{t^2}}}} \right)\dfrac{{dt}}{2}} \\\ \Rightarrow \int {{e^t}\left( {\dfrac{1}{t} - \dfrac{2}{{{t^2}}}} \right)dt} \\\
Since, ddt(1t)=1t2\dfrac{d}{{dt}}\left( {\dfrac{1}{t}} \right) = - \dfrac{1}{{{t^2}}}
The given integral is of the form ex[f(x)+f(x)]dx=exf(x)+C\int {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]dx = {e^x}f\left( x \right) + C} , where f(x)=1tf\left( x \right) = \dfrac{1}{t} and f(x)=1t2f'\left( x \right) = - \dfrac{1}{{{t^2}}}
Then, the value of the given integral is ett+C\dfrac{{{e^t}}}{t} + C
Now, put back the value of t=2xt = 2x
e2x2x+C\Rightarrow \dfrac{{{e^{2x}}}}{{2x}} + C

Note: The function of the type ex{e^x} is an exponential function. The integral involving ex{e^x} is usually solved using by parts or the identity ex[f(x)+f(x)]dx=exf(x)+C\int {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]dx = {e^x}f\left( x \right) + C} . Since, limits are not given, it is an indefinite integral.