Question
Question: The value of \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]is...
The value of ∫x(xn + 1)dxis
a. n1log(xn + 1xn) + C
b. log(xnxn+1) + C
c. n1log(xnxn + 1) + C
d. log(xn+1xn) + C
Solution
First multiply numerator and denominator by xn - 1and assume xn = t and simplifying the problem. Then the integration will turn out to be a easier fraction to deal with.
Complete step by step solution: Given,
∫x(xn + 1)dx
On Multiplying denominator and numerator by xn - 1,
=∫xn(xn + 1)xn - 1dx
Now, let, xn = t
⇒xn - 1dx = ndt,
So we get,
= n1∫t(t + 1)dt………(1)
Now, we use the form of partial fractions to find the integral,
t(t+1)1=tA+t+1B ⇒t(t+1)1=t(t+1)A(t+1)+BtSo,
A(t+1)+Bt= 1
If we take, t=0 then,
A(0+1)+B.0=1 gives us A=1
And also for , t=−1
A(−1+1)+B.−1=1 gives us B=−1
Now equation 1 can be written as,
=n1[∫(t1−t+11)dt
If we integrate now, we have, as integral of t1 is logt,
⇒n1[logt−log(t+1)]
Now, also,
`loga−logb=logba
⇒n1[log(t+1t)]
Putting the value of t we have,
=n1[log(xn+1xn)]
So, we get, \int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} $$$$ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]+C
Note: t(t+1)1can be directly written as sum of two fractions t1,−t+11as t(t+1)1=t1−t+11. We can also do this integration in another way by multiplying the denominator and numerator by xn−1.