Solveeit Logo

Question

Question: The value of \(\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}}\) is equals to (a) \(\dfrac{1}{3}\ln \left| \...

The value of dxx1x3\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}} is equals to
(a) 13ln1x311x3+1+C\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}-1}{\sqrt{1-{{x}^{3}}}+1} \right|+C
(b)13ln1x3+11x31+C\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}+1}{\sqrt{1-{{x}^{3}}}-1} \right|+C
(c)13ln11x3+C\dfrac{1}{3}\ln \left| \dfrac{1}{\sqrt{1-{{x}^{3}}}} \right|+C
(d)13ln1x3+C\dfrac{1}{3}\ln \left| 1-{{x}^{3}} \right|+C

Explanation

Solution

Now, to solve this question what we will do is, we will let 1x3=t\sqrt{1-{{x}^{3}}}=t, and on differentiating on both sides and on rearranging, we will substitute values in integral I, then by using some standard integration formula, we will end up with final answer.

Complete step by step answer:
Let, I=dxx1x3I=\int{\dfrac{dx}{x\sqrt{1-{{x}^{3}}}}}
Now, let 1x3=t\sqrt{1-{{x}^{3}}}=t
Differentiating both side by using formula of differentiation such as ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}} and ddx(xn)=nxn1\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}} also, chain rule of differentiation says that if y = f(g(x)), then ddx(f(g(x))=f(g(x))g(x)\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x) , we get
3x221x3dx=dt\dfrac{-3{{x}^{2}}}{2\sqrt{1-{{x}^{3}}}}dx=dt ,
Or, re – writing the terms we get
11x3dx=23x2dt\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt
So, substituting 11x3dx=23x2dt\dfrac{1}{\sqrt{1-{{x}^{3}}}}dx=-\dfrac{2}{3{{x}^{2}}}dt in I, we get
I=23dtxx2I=\int{-\dfrac{2}{3}\dfrac{dt}{x\cdot {{x}^{2}}}}
Also, on rearranging terms of 1x3=t\sqrt{1-{{x}^{3}}}=t, we getx3=1t2{{x}^{3}}=1-{{t}^{2}},
Substitituting, x3=1t2{{x}^{3}}=1-{{t}^{2}} in I=23dtx3I=\int{-\dfrac{2}{3}\dfrac{dt}{{{x}^{3}}}}, we get
I=23dt(1t2)I=\int{-\dfrac{2}{3}\dfrac{dt}{(1-{{t}^{2}})}}
Or, I=23dt(t21)I=\dfrac{2}{3}\int{\dfrac{dt}{({{t}^{2}}-1)}}
Using, algebraic identity a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=(a+b)(a-b) , we can write t21=(t+1)(t1){{t}^{2}}-1=(t+1)(t-1)
So, I=23dt(t+1)(t1)I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}
Now, we can write dt(t+1)(t1)\dfrac{dt}{(t+1)(t-1)} as dt(t+1)(t1)=12(1t11t+1)dt\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt
Putting dt(t+1)(t1)=12(1t11t+1)dt\dfrac{dt}{(t+1)(t-1)}=\dfrac{1}{2}\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt in I=23dt(t+1)(t1)I=\dfrac{2}{3}\int{\dfrac{dt}{(t+1)(t-1)}}, we get
I=23.12(1t11t+1)dtI=\dfrac{2}{3}.\dfrac{1}{2}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}
On simplifying, we get
I=13(1t11t+1)dtI=\dfrac{1}{3}\int{\left( \dfrac{1}{t-1}-\dfrac{1}{t+1} \right)dt}
Or, I=13(1t1dt1t+1dt)I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right)
We know that, 1x+adx=ln(x+a)+C\int{\dfrac{1}{x+a}dx=\ln (x+a)+C} , where a is any real number,
So, 1t1dt\int{\dfrac{1}{t-1}dt} will be equals to 1t1dt=ln(t1)+C\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C and 1t+1dt\int{\dfrac{1}{t+1}dt} will be equals to 1t+1dt=ln(t+1)+C\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C.
Putting, values of 1t1dt=ln(t1)+C\int{\dfrac{1}{t-1}dt}=\ln (t-1)+C and 1t+1dt=ln(t+1)+C\int{\dfrac{1}{t+1}dt}=\ln (t+1)+C in I=13(1t1dt1t+1dt)I=\dfrac{1}{3}\left( \int{\dfrac{1}{t-1}dt-\int{\dfrac{1}{t+1}d}t} \right), we get
I=13(ln(t1)+Cln(t+1)+C)I=\dfrac{1}{3}\left( \ln (t-1)+C-\ln (t+1)+C \right)
Now, we know that lna(M)lna(N)=lna(MN){{\ln }_{a}}(M)-{{\ln }_{a}}(N)={{\ln }_{a}}\left( \dfrac{M}{N} \right)
So, ln(t1)ln(t+1)=ln(t1t+1)\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right),
Putting, ln(t1)ln(t+1)=ln(t1t+1)\ln (t-1)-\ln (t+1)=\ln \left( \dfrac{t-1}{t+1} \right) in I=13(log(t1)+Clog(t+1)+C)I=\dfrac{1}{3}\left( \log (t-1)+C-\log (t+1)+C \right), we get
I=13lnt1t+1I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|
As, we assumed that, 1x3=t\sqrt{1-{{x}^{3}}}=t
So, substituting, value of 1x3=t\sqrt{1-{{x}^{3}}}=t, back in integral I=13lnt1t+1I=\dfrac{1}{3}\ln \left| \dfrac{t-1}{t+1} \right|, we get
I=13ln1x311x3+1+CI=\dfrac{1}{3}\ln \left| \dfrac{\sqrt{1-{{x}^{3}}}-1}{\sqrt{1-{{x}^{3}}}+1} \right|+C

So, the correct answer is “Option A”.

Note: Always remember some of the standard formula of indefinite integrals such asxdx=x22+C\int{xdx=\dfrac{{{x}^{2}}}{2}+C}, dxx2a2=12alnxax+a+C\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}=\dfrac{1}{2a}\ln \left| \dfrac{x-a}{x+a} \right|}+C and 1x+adx=ln(x+a)+C\int{\dfrac{1}{x+a}dx=\ln (x+a)+C} also, basics of differentiation such as ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}, ddx(xn)=nxn1\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}} and chain rule of differentiation which states that y = f(g(x)), then ddx(f(g(x))=f(g(x))g(x)\dfrac{d}{dx}(f(g(x))=f'(g(x))\cdot g'(x). Do not forget to add constants in the final answer as we are solving indefinite integral not definite integral. Try not to make calculation errors.