Solveeit Logo

Question

Question: The value of \[\int{\dfrac{dx}{1+e\cos x}}\] must be same as: - (a) \[\dfrac{1}{\sqrt{1-{{e}^{2}}}...

The value of dx1+ecosx\int{\dfrac{dx}{1+e\cos x}} must be same as: -
(a) 11e2tan1(1e1+etanx2)+c\dfrac{1}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c, (e lies between 0 and 1)
(b) 21e2tan1(1e1+etanx2)+c\dfrac{2}{\sqrt{1-{{e}^{2}}}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c, (e lies between 0 and 1)
(c) 1e21loge21sinx1+ecosx+c\dfrac{1}{\sqrt{{{e}^{2}}-1}}\log \dfrac{\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c, (e is greater than 1)
(d) 2e21loge+cosx+e21sinx1+ecosx+c\dfrac{2}{\sqrt{{{e}^{2}}-1}}\log \dfrac{e+\cos x+\sqrt{{{e}^{2}}-1}\sin x}{1+e\cos x}+c, (e is greater than 1)

Explanation

Solution

Use the conversion formula: - cosx=(1tan2x21+tan2x2)\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right) and send (1+tan2x2)\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right) to the numerator. In the numerator use the identity, (1+tan2x2)=sec2x2\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}. Now, assume tanx2=k\tan \dfrac{x}{2}=k in the denominator. Differentiate both the sides to find dx in terms of dk. Convert the integral in the form dxa2+x2\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}, whose solution is 1atan1(xa)\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right). Finally, substitute the value of k to get the correct option.

Complete step by step answer:
We have been given: -
I=dx1+ecosx\Rightarrow I=\int{\dfrac{dx}{1+e\cos x}}
Using the conversion: - cosx=(1tan2x21+tan2x2)\cos x=\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right), we get,

& \Rightarrow I=\int{\dfrac{dx}{1+e\left( \dfrac{1-{{\tan }^{2}}\dfrac{x}{2}}{1+{{\tan }^{2}}\dfrac{x}{2}} \right)}} \\\ & \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)+e\left( 1-{{\tan }^{2}}\dfrac{x}{2} \right)}} \\\ & \Rightarrow I=\int{\dfrac{\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}} \\\ \end{aligned}$$ Using the identity: - $$\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}$$, we get, $$\Rightarrow I=\int{\dfrac{{{\sec }^{2}}\dfrac{x}{2}dx}{\left( 1+e \right)+\left( 1-e \right){{\tan }^{2}}\dfrac{x}{2}}}$$ Substituting, $$\tan \dfrac{x}{2}=k$$, we have, $$\begin{aligned} & \Rightarrow d\left( \tan \dfrac{x}{2} \right)=dk \\\ & \Rightarrow \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}dx=dk \\\ & \Rightarrow {{\sec }^{2}}\dfrac{x}{2}dx=2dk \\\ \end{aligned}$$ Substituting these values in (i), we get, $$\Rightarrow I=\int{\dfrac{2dk}{\left( 1+e \right)+\left( 1-e \right).{{k}^{2}}}}$$ $$\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{\left( \dfrac{1+e}{1-e} \right)+{{k}^{2}}}}$$ This can be written as: - $$\Rightarrow I=\dfrac{2}{\left( 1-e \right)}\int{\dfrac{dk}{{{\left( \sqrt{\dfrac{1+e}{1-e}} \right)}^{2}}+{{k}^{2}}}}$$ The above integral is of the form: - $$\int{\dfrac{dx}{{{a}^{2}}+{{x}^{2}}}}$$ whose solution is $$\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)$$. $$\Rightarrow I=\dfrac{2}{1-e}\times \dfrac{1}{\sqrt{\dfrac{1+e}{1-e}}}{{\tan }^{-1}}\left( \dfrac{k}{\sqrt{\dfrac{1+e}{1-e}}} \right)+c$$, c = constant of integration. $$\Rightarrow I=\dfrac{2}{1-e}\times \sqrt{\dfrac{1-e}{1+e}}{{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}k \right)+c$$ Substituting the value of k and simplifying, we get, $$\begin{aligned} & \Rightarrow I=\dfrac{2}{\sqrt{1-e}\times \sqrt{1+e}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2} \right)+c \\\ & \Rightarrow I=\dfrac{2}{\sqrt{1-{{e}^{2}}}}\times {{\tan }^{-1}}\left( \sqrt{\dfrac{1-e}{1+e}}\tan \dfrac{x}{2}=k \right)+c \\\ \end{aligned}$$ Now, for $$\sqrt{\dfrac{1+e}{1-e}}$$ to be defined, e must be less than 1 and greater than 0. This is because the term inside the square root must not be negative. **So, the correct answer is “Option B”.** **Note:** One may note that we do not have to convert $$\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)={{\sec }^{2}}\dfrac{x}{2}$$ in denominator because we have to assume $$\tan \dfrac{x}{2}=k$$ in denominator. If we will use this conversion in the denominator then we will not be able to solve the question. Finally, remember that we have to define the range of ‘e’ so that the term $$\sqrt{\dfrac{1-e}{1+e}}$$ can be defined.