Solveeit Logo

Question

Question: The value of \[\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx = } \] A. ...

The value of cot2x(csc2x+cscx)dx=\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx = }
A. xsinx+cx - \sin x + c
B. x+cosx+cx + \cos x + c
C. sinxx+c\sin x - x + c
D. xcosx+cx - \cos x + c

Explanation

Solution

We need to find the value of integral cot2x(csc2x+cscx)dx\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} . For that, we will first write cotx\cot x and cscx\csc x, in terms of sinx\sin x and cosx\cos x. After that, we will cancel out some terms from the numerator and denominator after taking the LCM from the denominator. After all this we will be left with cos2x1+sinxdx\int {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} dx. We will then use the property sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and write cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}xwhich is of the form a2b2{a^2} - {b^2}. We know, a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b). So, we will use this property and then our integral becomes (1sinx)(1+sinx)(1+sinx)dx\int {\dfrac{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}}{{\left( {1 + \sin x} \right)}}} dx. Now, after cancelling the terms from numerator and denominator, we will solve the remaining integral to obtain the required answer.

Complete step by step answer:
We need to find cot2x(csc2x+cscx)dx\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} .
Writing cotx\cot x as cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} and cscx\csc x as cscx=1sinx\csc x = \dfrac{1}{{\sin x}} in the integral, we get
cot2x(csc2x+cscx)dx=(cosxsinx)2((1sinx)2+1sinx)dx=cos2xsin2x(1sin2x+1sinx)dx\Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{{{\left( {\dfrac{{\cos x}}{{\sin x}}} \right)}^2}}}{{\left( {{{\left( {\dfrac{1}{{\sin x}}} \right)}^2} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx}
Taking LCM in the denominator, we have
cot2x(csc2x+cscx)dx=cos2xsin2x(1sin2x+1sinx)dx=cos2xsin2x(1+sinxsin2x)dx\Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{1}{{{{\sin }^2}x}} + \dfrac{1}{{\sin x}}} \right)}}dx} = \int {\dfrac{{\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}}}{{\left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)}}dx}

In simple way, we can write the integral as
((cos2xsin2x)÷(1+sinxsin2x))dx\int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \div \left( {\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}} \right)} \right)dx}
We know, a÷b=a×1ba \div b = a \times \dfrac{1}{b}. Using this, we get
((cos2xsin2x)×(11+sinxsin2x))dx\Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{1}{{\dfrac{{1 + \sin x}}{{{{\sin }^2}x}}}}} \right)} \right)dx}
((cos2xsin2x)×(sin2x1+sinx))dx\Rightarrow \int {\left( {\left( {\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}}} \right) \times \left( {\dfrac{{{{\sin }^2}x}}{{1 + \sin x}}} \right)} \right)dx}
Cancelling out sin2x{\sin ^2}x from numerator and denominator, we get
(cos2x1+sinx)dx\Rightarrow \int {\left( {\dfrac{{{{\cos }^2}x}}{{1 + \sin x}}} \right)dx}

Now using sin2x+cos2x=1cos2x=1sin2x{\sin ^2}x + {\cos ^2}x = 1 \Leftrightarrow {\cos ^2}x = 1 - {\sin ^2}x in numerator, we get
(1sin2x1+sinx)dx\Rightarrow \int {\left( {\dfrac{{1 - {{\sin }^2}x}}{{1 + \sin x}}} \right)dx}
As we know, (1)2=1{(1)^2} = 1, we can write the above equation as
(1)2(sinx)21+sinxdx\Rightarrow \int {\dfrac{{{{\left( 1 \right)}^2} - {{\left( {\sin x} \right)}^2}}}{{1 + \sin x}}} dx
Now using the property a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) in numerator, we get
(1+sinx)(1sinx)1+sinxdx\Rightarrow \int {\dfrac{{\left( {1 + \sin x} \right)\left( {1 - \sin x} \right)}}{{1 + \sin x}}dx}
Cancelling out 1+sinx1 + \sin x from numerator and denominator, we get
(1sinx)dx\Rightarrow \int {\left( {1 - \sin x} \right)dx}
We know, (f(x)g(x))dx=f(x)dxg(x)dx \Rightarrow \int {\left( {f(x) - g(x)} \right)dx} = \int {f(x)} dx - \int {g(x)} dx. So,
(1sinx)dx=1dxsinxdx\Rightarrow \int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx}

Now, using 1dx=x+c\int 1 dx = x + cand sinxdx=cosx+c\int {\sin x} dx = - \cos x + c in the above equation, we get
(1sinx)dx=1dxsinxdx\int {\left( {1 - \sin x} \right)dx = \int 1 dx - \int {\sin x} dx}
(1sinx)dx=x+c1(cosx+c2)\Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} - ( - \cos x + {c_2}), where c1,c2{c_1},{c_2} are constant terms
(1sinx)dx=x+c1+cosxc2\Rightarrow \int {\left( {1 - \sin x} \right)dx} = x + {c_1} + \cos x - {c_2}
Clubbing the constant terms together, we get
cot2x(csc2x+cscx)dx=x+cosx+(c1c2)\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + \left( {{c_1} - {c_2}} \right)
cot2x(csc2x+cscx)dx=x+cosx+c,\Rightarrow \int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c, where c=c1c2c = {c_1} - {c_2}
Hence, we got cot2x(csc2x+cscx)dx=x+cosx+c\int {\dfrac{{{{\cot }^2}x}}{{\left( {{{\csc }^2}x + \csc x} \right)}}dx} = x + \cos x + c.

Therefore, the correct option is B.

Note: For such a question, the best way is to write the given expression in terms of sinx\sin x and cosx\cos x. Also, we need to be thorough with the trigonometric properties as well as integration formulas. While integrating, we forget to add the constant term and usually ignore the constant term. So, this needs to be taken care of. Also, while integrating sinx\sin x and cosx\cos x, we usually get confused about where a negative sign is included and where it is not included.