Solveeit Logo

Question

Question: The value of \(\int{\dfrac{\cos 2x}{\cos x}dx}\) is equal to: (A). \(2\sin -x+\log \left( \sec x-\...

The value of cos2xcosxdx\int{\dfrac{\cos 2x}{\cos x}dx} is equal to:
(A). 2sinx+log(secxtanx)+C2\sin -x+\log \left( \sec x-\tan x \right)+C
(B). 2sinxlog(secxtanx)+C2\sin -x\log \left( \sec x-\tan x \right)+C
(C). 2sinx+log(secx+tanx)+C2\sin x+\log \left( \sec x+\tan x \right)+C
(D). 2sinxlog(secx+tanx)+C2\sin x-\log \left( \sec x+\tan x \right)+C

Explanation

Solution

Hint: From the trigonometric identities, we know that cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1. Substitute this value of cos2x\cos 2x in the place of the numerator of the given integral and then we left with 2cosxsecx2\cos x-\sec x inside the integral then integrate it with respect to x.

Complete step-by-step solution -
The integral given in the question is:
cos2xcosxdx\int{\dfrac{\cos 2x}{\cos x}dx}
We can write the numerator of the above integral as 2cos2x12{{\cos }^{2}}x-1 because we know from the trigonometric identities that cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1.
(2cos2x1)cosxdx\int{\dfrac{\left( 2{{\cos }^{2}}x-1 \right)}{\cos x}dx}
Simplifying the above integral as follows:
(2cosx1cosx)dx\int{\left( 2\cos x-\dfrac{1}{\cos x} \right)dx}
We know that reciprocal of cosx\cos x is secx\sec x so substituting secx\sec x in place of 1cosx\dfrac{1}{\cos x} in the above integral.(2cosxsecx)dx\int{\left( 2\cos x-\sec x \right)dx}
Now separately integrating the trigonometric functions we get,
2cosxdxsecxdx\int{2\cos xdx-\int{\sec xdx}}
We know that integration of cosx\cos x is sinx\sin x and integration of secx\sec x is ln(secx+tanx)\ln \left( \sec x+\tan x \right) so using these integral values in the above integral we get,
2sinxln(secx+tanx)+C2\sin x-\ln \left( \sec x+\tan x \right)+C
From the above integration, the value of integral given in the question is found to be: 2sinxln(secx+tanx)+C2\sin x-\ln \left( \sec x+\tan x \right)+C
Hence, the correct option is (d).

Note: You might want to know how the integration of secx\sec x is ln(secx+tanx)\ln \left( \sec x+\tan x \right). In the below, we are going to see how this integral value came.
We know that the derivative of secx+tanx\sec x+\tan xis:
d(secx+tanx)dx=sec2x+secxtanx d(secx+tanx)dx=secx(secx+tanx) \begin{aligned} & \dfrac{d\left( \sec x+\tan x \right)}{dx}={{\sec }^{2}}x+\sec x\tan x \\\ & \Rightarrow \dfrac{d\left( \sec x+\tan x \right)}{dx}=\sec x\left( \sec x+\tan x \right) \\\ \end{aligned}
As you see from the above that secx+tanx\sec x+\tan x is common on both the sides of the equation so we will assume secx+tanx\sec x+\tan x as “u”.
dudx=secx(u)\dfrac{du}{dx}=\sec x\left( u \right)
Writing terms containing x on the one side of the equation and terms containing “u” on the other side of the equation we get,
duu=secxdx\dfrac{du}{u}=\sec xdx
Integrating on the both the sides we get,
duu=secxdx\int{\dfrac{du}{u}}=\int{\sec xdx}
lnu+C=secxdx\ln u+C=\int{\sec xdx}
Substituting the value of “u” as secx+tanx\sec x+\tan x in the above equation we get,
ln(secx+tanx)+C=secxdx\ln \left( \sec x+\tan x \right)+C=\int{\sec xdx}
Hence, we have derived the integration of secx\sec x.