Solveeit Logo

Question

Question: The Value of \[\int {\dfrac{{(\cos 2x - 1)}}{{(\cos 2x + 1)}}.} dx\] is A.\(\tan x - x + c\) B.\...

The Value of (cos2x1)(cos2x+1).dx\int {\dfrac{{(\cos 2x - 1)}}{{(\cos 2x + 1)}}.} dx is
A.tanxx+c\tan x - x + c
B.tanx+x+c\tan x + x + c
C.xtanx+cx - \tan x + c
D.xcotx+c - x - \cot x + c

Explanation

Solution

Hint : Before applying integration, we simplify the integrand by using the trigonometric identities. To apply the trigonometric identity, we take -1 common in the numerator of the integrand. In this particular problem, we use the Pythagoras trigonometric identities that is sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, tan2x+1=sec2x{\tan ^2}x + 1 = {\sec ^2}x and cot2x+1=csc2x{\cot ^2}x + 1 = {\csc ^2}x.

Complete step-by-step answer :
Given (cos2x1)(cos2x+1).dx\int {\dfrac{{(\cos 2x - 1)}}{{(\cos 2x + 1)}}.} dx.
In (1cos2x)\left( {1 - \cos 2x} \right), we take -1 common we have:
(cos2x1)(cos2x+1).dx=1(1cos2x)(cos2x+1).dx\int {\dfrac{{(\cos 2x - 1)}}{{(\cos 2x + 1)}}.} dx = - 1\int {\dfrac{{(1 - \cos 2x)}}{{(\cos 2x + 1)}}.} dx
=1(1cos2x)(1+cos2x).dx= - 1\int {\dfrac{{(1 - \cos 2x)}}{{(1 + \cos 2x)}}.} dx
Now we know trigonometric identity sin2x=1cos(2x)2{\sin ^2}x = \dfrac{{1 - \cos (2x)}}{2} and cos2x=1+cos(2x)2{\cos ^2}x = \dfrac{{1 + \cos (2x)}}{2}.
Using these identities we have 2sin2x=1cos(2x)2{\sin ^2}x = 1 - \cos (2x) and 2cos2x=1+cos(2x)2{\cos ^2}x = 1 + \cos (2x). Now substituting this in above integral we have
=12sin2x2cos2x.dx= - 1\int {\dfrac{{2{{\sin }^2}x}}{{2{{\cos }^2}x}}.} dx
Now cancelling 2 we have
=1sin2xcos2x.dx= - 1\int {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.} dx
We know that the tangent is the ratio of sine function to the cosine function. Hence we can write sin2xcos2x=tan2x\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = {\tan ^2}x, then we have
=1tan2x.dx= - 1\int {{{\tan }^2}x.} dx
But we don’t know the direct integration formula of tan2x{\tan ^2}x. So we use the identity tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1.
=1(sec2x1).dx= - 1\int {({{\sec }^2}x - 1).} dx
Now splitting the integral
=1(sec2x).dx11 dx= - 1\int {({{\sec }^2}x).} dx - 1\int { - 1{\text{ }}dx}
We know the product of two negative numbers results in a positive number.
=1sec2x dx+11 dx= - 1\int {{{\sec }^2}x{\text{ }}} dx + 1\int {1{\text{ }}dx}
Now we know the integration of sec2x{\sec ^2}x is tanx\tan x, then we have
=tanx+x+c= - \tan x + x + c
Or
(cos2x1)(cos2x+1).dx=xtanx+c\int {\dfrac{{(\cos 2x - 1)}}{{(\cos 2x + 1)}}.} dx = x - \tan x + c, Where ‘c’ is the integration constant.
Hence the correct option is (c).
So, the correct answer is “Option C”.

Note : We need to simplify the integrand before applying the integration. In above after the simplification if we have cot2x{\cot ^2}x instead of tan2x{\tan ^2}x, to solve this we use the Pythagoras trigonometric identity cot2x+1=csc2x{\cot ^2}x + 1 = {\csc ^2}x. Because we know the integration of csc2x - {\csc ^2}x is cotx\cot x. Also, the integration of constant is not zero, we should be careful regarding this.