Solveeit Logo

Question

Question: The value of \(\int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}...

The value of 1313x41x4cos12x1+x2dx=A3+A212A4log313+1\int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx = \dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}, then the value of A is:
A. π\pi
B. 2π2\pi
C. 3π3\pi
D. None of these

Explanation

Solution

We will first make the modification of putting x = -y and then put in the values accordingly, we will somehow get two times the integral we require to a definite value whose integral we can find easily and then compare that to the given RHS and find A.

Complete step-by-step answer:
Let I=1313x41x4cos12x1+x2dxI = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx ……….(1)
Let us now put x=yx = - y, then we will have to put dx=dydx = - dy and the limits will interchange as well because when x will go to a, then –y will go to –a.
Hence, we will have:- I=1313y41y4cos12y1+y2(dy)I = \int_{\dfrac{1}{{\sqrt 3 }}}^{ - \dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} {\cos ^{ - 1}}\dfrac{{ - 2y}}{{1 + {y^2}}}( - dy)
We know that cos1(x)=πcos1x{\cos ^{ - 1}}( - x) = \pi - {\cos ^{ - 1}}x for 1x1 - 1 \leqslant x \leqslant 1.
Using this, we will get:-
I=1313y41y4[πcos1(2y1+y2)]dyI = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} \left[ {\pi - {{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} \right]dy
Opening up the bracket on RHS will lead us to:-
I=π1313y41y4dy1313y41y4cos1(2y1+y2)dyI = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy - \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy …………(2)
Let I1=π1313y41y4dy{I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}} dy and I2=1313y41y4cos1(2y1+y2)dy{I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{y^4}}}{{1 - {y^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2y}}{{1 + {y^2}}}} \right)} dy
Replacing y by x in I1{I_1} and I2{I_2} will not change anything and we will get:-
I1=π1313x41x4dx{I_1} = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx ………….(3)
I2=1313x41x4cos1(2x1+x2)dx{I_2} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}{{\cos }^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)} dx ……….(4)
Now, let we can clearly see that I2=I{I_2} = I ……………(5)
Putting (3), (4) and (5) in (2), we will get:-
I=π1313x41x4dxII = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx - I
Taking the I from RHS to LHS, we will get:-
2I=π1313x41x4dx\Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} dx
We can rewrite this as:-
2I=π13131+x411x4dx\Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + {x^4} - 1}}{{1 - {x^4}}}} dx
Now, rewriting it as:-
2I=π1313[1+11x4]dx\Rightarrow 2I = \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\left[ { - 1 + \dfrac{1}{{1 - {x^4}}}} \right]} dx
Now, rewriting it again as follows:-
2I=π1313dx+π131311x4dx\Rightarrow 2I = - \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {dx + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx}
On simplifying the RHS, we will get:-
2I=23π+π131311x4dx\Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi + \pi \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx …………(6)
Let I3=131311x4dx{I_3} = \int_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx
We can see that I3{I_3} is an even function because putting –x does not change it at all and we also know that: aaf(x)dx=20af(x)dx\int_{ - a}^a {f(x)dx = 2} \int_0^a {f(x)dx} if f(x)f(x) is an even function.
Therefore, we have:-
I3=201311x4dx{I_3} = 2\int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^4}}}} dx
We can rewrite it as:-
I3=0131+1+x2x21x4dx\Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{1 - {x^4}}}} dx
Now we will use the formula:- a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
Therefore, we get:- I3=0131+1+x2x2(1x2)(1+x2)dx \Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{1 + 1 + {x^2} - {x^2}}}{{(1 - {x^2})(1 + {x^2})}}} dx
Rewriting it as follows:-
I3=01311x2dx+01311+x2dx\Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 + {x^2}}}} dx …………..(7)
Now, we will use the formula that:- 11+x2dx=tan1x\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x
Putting this in (7), we will get that:-
I3=01311x2dx+tan113tan10\Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} - {\tan ^{ - 1}}0
On simplifying it, we will get:-
I3=01311x2dx+π6\Rightarrow {I_3} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx + \dfrac{\pi }{6} ……….(8)
Now, let I4=01311x2dx{I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{1 - {x^2}}}} dx
We know that 11x2=E1x+F1+x\dfrac{1}{{1 - {x^2}}} = \dfrac{E}{{1 - x}} + \dfrac{F}{{1 + x}}
On solving this, we will have:-
1=E(1+x)+F(1x)1 = E(1 + x) + F(1 - x)
Comparing both and solving, we will get:-
11x2=12(1x)+12(1+x)\dfrac{1}{{1 - {x^2}}} = \dfrac{1}{{2(1 - x)}} + \dfrac{1}{{2(1 + x)}}
Putting this in (8), we will get:-
I4=01312(1x)dx+01312(1+x)dx{I_4} = \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 - x)}}} dx + \int_0^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{1}{{2(1 + x)}}} dx
Now, we know that 1xdx=lnx\int {\dfrac{1}{x}dx} = \ln x
So, we will get:- 12(1x)dx+12(1+x)dx=12ln1x+12ln1+x\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = - \dfrac{1}{2}\ln \left| {1 - x} \right| + \dfrac{1}{2}\ln \left| {1 + x} \right|
Hence, 12(1x)dx+12(1+x)dx=12ln1+xln1x\int {\dfrac{1}{{2(1 - x)}}dx} + \int {\dfrac{1}{{2(1 + x)}}dx} = \dfrac{1}{2}\dfrac{{\ln \left| {1 + x} \right|}}{{\ln \left| {1 - x} \right|}} ( Because lnalnb=lnab\ln a - \ln b = \ln \dfrac{a}{b} )
So, I4=12ln3+1ln31{I_4} = \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 + 1} \right|}}{{\ln \left| {\sqrt 3 - 1} \right|}}
On rewriting it, we will get:-
I4=12ln31ln3+1{I_4} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} (Because lna1=lna\ln {a^{ - 1}} = - \ln a)
Putting this in (8), we will get:-
I3=12ln31ln3+1+π6\Rightarrow {I_3} = - \dfrac{1}{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{\pi }{6}
Now putting this in (6), we will get:-
2I=23ππ2ln31ln3+1+π26\Rightarrow 2I = - \dfrac{2}{{\sqrt 3 }}\pi - \dfrac{\pi }{2}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{6}
Hence, we get:-
I=13ππ4ln31ln3+1+π212\Rightarrow I = - \dfrac{1}{{\sqrt 3 }}\pi - \dfrac{\pi }{4}\dfrac{{\ln \left| {\sqrt 3 - 1} \right|}}{{\ln \left| {\sqrt 3 + 1} \right|}} + \dfrac{{{\pi ^2}}}{{12}}
Now comparing this to A3+A212A4log313+1\dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}, we can clearly see that A=πA = \pi .

So, the correct answer is “Option A”.

Note: The students must note that we have created a lot of I’s to reach the required integral, they may go in with the single integral as well but that can create a lot of confusion.
Alternate Way:-
Let us talk about the alternate method in brief:
We will use that:- cos1y=π2sin1y{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y.
So, cos1(2x1+x2)=π2sin1(2x1+x2)=π2tan1x{\cos ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = \dfrac{\pi }{2} - {\tan ^{ - 1}}x (By formula)
Now, use the fact that x41x42tan1x\dfrac{{{x^4}}}{{1 - {x^4}}} 2{\tan ^{ - 1}}x is an odd function and keep on simplifying, you will get the required answer.