Solveeit Logo

Question

Question: The value of \(\int {\cos e{c^{ - 1}}x dx, x > 1.} \)...

The value of cosec1xdx,x>1.\int {\cos e{c^{ - 1}}x dx, x > 1.}

Explanation

Solution

Here, Given the functioncosec1xdx,x>1.\int {\cos e{c^{ - 1}}x dx, x > 1.} to integrate. To solve this function we have to use the method known as Integration by Parts. The formula for this method is uvdxdudxvdxu\int v dx - \int {\dfrac{{du}}{{dx}}} \int {vdx} . By putting the values of functions in this formula we will get the solution.

Complete step-by-step solution:
Here, Given the trigonometric equation and we need to solve it.
Given equation is cosec1x,dx,x>1.\int {\cos e{c^{ - 1}}x,dx,x > 1.} or we can write it as 1cosec1xdx\int {1*\cos e{c^{ - 1}}xdx} .
While using the method of Integration by parts we have to separate the uu& vv values of the equation using the LIATE rule.
Where,
L= Logarithmic
I= Inverse Trigonometric
A= Algebraic
T= Trigonometric
E= Exponential
By which serially the value of uu&vv are elected. That means the value of uu is cosec1x\cos e{c^{ - 1}}x because it is Inverse Trigonometric & value of vv is 1 or x0{x^0} which is Algebraic. (We knowx0{x^0}=1.)
So,
uu=cosec1x\cos e{c^{ - 1}}x , vv = 1
Substitute these values in formula,
Equation become,
\Rightarrow cosec1x1dxd(cosec1x)dx1dx\cos e{c^{ - 1}}x\int {1dx - \int {\dfrac{{d\left( {\cos e{c^{ - 1}}x} \right)}}{{dx}}} } \int {1dx} _ _ _ _ _ _ _ _ _ _(1)
Some Important formulas,
\Rightarrow xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
\Rightarrow x0dx=x0+10+1=x\int {{x^0}} dx = \dfrac{{{x^{0 + 1}}}}{{0 + 1}} = x and,
d(cosec1x)dx=1xx21\Rightarrow \dfrac{{d\left( {\cos e{c^{ - 1}}x} \right)}}{{dx}} = \dfrac{{ - 1}}{{x\sqrt {{x^2} - 1} }}
So, by substituting these values in equation (1),
(1)\Rightarrow xcosec1x1xx21×xdxx\cos e{c^{ - 1}}x - \int {\dfrac{{ - 1}}{{x\sqrt {{x^2} - 1} }}} \times xdx
xcosec1x+dxx21\Rightarrow x\cos e{c^{ - 1}}x + \int {\dfrac{{dx}}{{\sqrt {{x^2} - 1} }}}
We know,
dxx2a2=logx+x2a2+c\int {\dfrac{{dx}}{{\sqrt {{x^2} - {a^2}} }}} = \log |x + \sqrt {{x^2} - {a^2}} | + c
xcosec1x+logx+x21+c\Rightarrow x\cos e{c^{ - 1}}x + \log |x + \sqrt {{x^2} - 1} | + c
Therefore, the solution of cosec1xdx,x>1.\int {\cos e{c^{ - 1}}x dx, x > 1.} is xcosec1x+logx+x21+c \Rightarrow x\cos e{c^{ - 1}}x + \log |x + \sqrt {{x^2} - 1} | + c.

Note: Note that we cannot directly integrate inverse trigonometric functions. We have to use some relations and formulas. Here the most important part is selecting the values of u and v. If we select the wrong values of u and v, we will get the wrong answer.