Question
Mathematics Question on Integrals of Some Particular Functions
The value of ∫0axa−xdx is
A
2a
B
4a
C
2πa
D
4πa
Answer
2πa
Explanation
Solution
Let x = cos2, θso that dx = - 2a sin θ cos θ dθ
Now ∫0axa−xdx=∫2π0acos2θa−acos2θ
(−asinθcosθ)dθ
[∵θ=2πatx=0;θ=0atx=a]
=a∫0π/2cos2θ1−cos2θ 2 sin θ cos θ d θ
[∵∫t0f(x)dx=−∫t0f(x)dx]
=a∫0π/22cosθsinθ.sinθcosθdθ
=a∫0π/22sin2θdθ=a∫0π/2(1−cos2θ)dθ
[∵cos2θ=1−2sin2θ]
=a[θ−2sin2θ]0π/2
=a[(2π−2sinπ)−(0−0)]
=a(2π−0)=2aπ