Solveeit Logo

Question

Question: The value of \(\int _ { \pi / 4 } ^ { 3 \pi / 4 } \frac { \phi } { 1 + \sin \phi } d \phi\) is...

The value of π/43π/4ϕ1+sinϕdϕ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \frac { \phi } { 1 + \sin \phi } d \phi is

A

πtanπ8\pi \tan \frac { \pi } { 8 }

B

C

tanπ8\tan \frac { \pi } { 8 }

D

None of these

Answer

πtanπ8\pi \tan \frac { \pi } { 8 }

Explanation

Solution

I=π/43π/4ϕ1+sinϕdϕ=π/43π/4πϕ1+sin(πϕ)dϕI = \int _ { \pi / 4 } ^ { 3 \pi / 4 } \frac { \phi } { 1 + \sin \phi } d \phi = \int _ { \pi / 4 } ^ { 3 \pi / 4 } \frac { \pi - \phi } { 1 + \sin ( \pi - \phi ) } d \phi

{π4+3π4=π}\left\{ \because \frac { \pi } { 4 } + \frac { 3 \pi } { 4 } = \pi \right\}

2I=π/43π/4π1+sinϕdϕ2 I = \int _ { \pi / 4 } ^ { 3 \pi / 4 } \frac { \pi } { 1 + \sin \phi } d \phi

On simplification, we get

I=π(21)=πtanπ8I = \pi ( \sqrt { 2 } - 1 ) = \pi \tan \frac { \pi } { 8 }