Question
Question: The value of \(\int _ { 1 } ^ { e } \log x d x\) is...
The value of ∫1elogxdx is
A
0
B
1
C
e−1
D
e+1
Answer
1
Explanation
Solution
I=∫1elogxdx⇒ I=∫e11⋅logxdx
⇒ I=[xlogx−x]1e=(eloge−e)−(0−1)
⇒ I=1.
The value of ∫1elogxdx is
0
1
e−1
e+1
1
I=∫1elogxdx⇒ I=∫e11⋅logxdx
⇒ I=[xlogx−x]1e=(eloge−e)−(0−1)
⇒ I=1.