Solveeit Logo

Question

Question: The value of \(\int _ { 1 } ^ { e } \log x d x\) is...

The value of 1elogxdx\int _ { 1 } ^ { e } \log x d x is

A

00

B

1

C

e1e - 1

D

e+1e + 1

Answer

1

Explanation

Solution

I=1elogxdxI = \int _ { 1 } ^ { e } \log x d xI=e11logxdxI = \int _ { e } ^ { 1 } 1 \cdot \log x d x

I=[xlogxx]1e=(elogee)(01)I = [ x \log x - x ] _ { 1 } ^ { e } = ( e \log e - e ) - ( 0 - 1 )

I=1I = 1.