Solveeit Logo

Question

Question: The value of \(\int _ { 1 } ^ { 2 } \log x d x\) is...

The value of 12logxdx\int _ { 1 } ^ { 2 } \log x d x is

A

log2/e\log 2 / e

B

log4\log 4

C

log4/e\log 4 / e

D

log2\log 2

Answer

log4/e\log 4 / e

Explanation

Solution

12logxdx=[xlogxx]12=2log22+1\int _ { 1 } ^ { 2 } \log x d x = [ x \log x - x ] _ { 1 } ^ { 2 } = 2 \log 2 - 2 + 1

=log41=log4loge=log4e= \log 4 - 1 = \log 4 - \log e = \log \frac { 4 } { e }.