Question
Question: The value of \(\int _ { 1 } ^ { 2 } \log x d x\) is...
The value of ∫12logxdx is
A
log2/e
B
log4
C
log4/e
D
log2
Answer
log4/e
Explanation
Solution
∫12logxdx=[xlogx−x]12=2log2−2+1
=log4−1=log4−loge=loge4.
The value of ∫12logxdx is
log2/e
log4
log4/e
log2
log4/e
∫12logxdx=[xlogx−x]12=2log2−2+1
=log4−1=log4−loge=loge4.