Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi } \left| \sin ^ { 3 } \theta \right| d \theta\) is...

The value of 0πsin3θdθ\int _ { 0 } ^ { \pi } \left| \sin ^ { 3 } \theta \right| d \theta is

A

0

B

3/8

C

4/3

D

π\pi

Answer

4/3

Explanation

Solution

I=0πsin3θdθI = \int _ { 0 } ^ { \pi } \left| \sin ^ { 3 } \theta \right| d \theta

Since (0,π)( 0 , \pi )

I=0πsin3θdθ=0πsinθ(1cos2θ)dθ\therefore I = \int _ { 0 } ^ { \pi } \sin ^ { 3 } \theta d \theta = \int _ { 0 } ^ { \pi } \sin \theta \left( 1 - \cos ^ { 2 } \theta \right) d \theta

=0πsinθdθ+0π(sinθ)cos2θdθ= \int _ { 0 } ^ { \pi } \sin \theta d \theta + \int _ { 0 } ^ { \pi } ( - \sin \theta ) \cos ^ { 2 } \theta d \theta

=[cosθ]0π+(cos3θ3)0π=43= [ - \cos \theta ] _ { 0 } ^ { \pi } + \left( \frac { \cos ^ { 3 } \theta } { 3 } \right) _ { 0 } ^ { \pi } = \frac { 4 } { 3 }.