Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi / 4 } \frac { 1 + \tan x } { 1 - \tan x } d x\) is...

The value of 0π/41+tanx1tanxdx\int _ { 0 } ^ { \pi / 4 } \frac { 1 + \tan x } { 1 - \tan x } d x is

A

12log2- \frac { 1 } { 2 } \log 2

B

14log2\frac { 1 } { 4 } \log 2

C

13log2\frac { 1 } { 3 } \log 2

D

None of these

Answer

12log2- \frac { 1 } { 2 } \log 2

Explanation

Solution

0π/41+tanx1tanxdx=0π/4tan(π4+x)dx\int _ { 0 } ^ { \pi / 4 } \frac { 1 + \tan x } { 1 - \tan x } d x = \int _ { 0 } ^ { \pi / 4 } \tan \left( \frac { \pi } { 4 } + x \right) d x

=[log{sec(π4+x)}]0π/4=12log2= \left[ \log \left\{ \sec \left( \frac { \pi } { 4 } + x \right) \right\} \right] _ { 0 } ^ { - \pi / 4 } = - \frac { 1 } { 2 } \log 2 .