Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi / 2 } \log \left( \frac { 4 + 3 \sin x } { 4 + 3 \cos x } \righ...

The value of 0π/2log(4+3sinx4+3cosx)dx\int _ { 0 } ^ { \pi / 2 } \log \left( \frac { 4 + 3 \sin x } { 4 + 3 \cos x } \right) d x is

A

2

B

34\frac { 3 } { 4 }

C

0

D

None of these

Answer

0

Explanation

Solution

Let

Then, I=0π/2log(4+3cosx4+3sinx)dxI = \int _ { 0 } ^ { \pi / 2 } \log \left( \frac { 4 + 3 \cos x } { 4 + 3 \sin x } \right) d x,

[0π/2f(x)dx=0π/2f(π2x)dx]\left[ \because \int _ { 0 } ^ { \pi / 2 } f ( x ) d x = \int _ { 0 } ^ { \pi / 2 } f \left( \frac { \pi } { 2 } - x \right) d x \right]

I=0π/2log(4+3sinx4+3cosx)dx=II = - \int _ { 0 } ^ { \pi / 2 } \log \left( \frac { 4 + 3 \sin x } { 4 + 3 \cos x } \right) d x = - I

2I=0I=02 I = 0 \Rightarrow I = 0.