Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } d x\) is...

The value of 0π/2sinx1+cos2xdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } d x is

A

π/2\pi / 2

B

π/4\pi / 4

C

π/3\pi / 3

D

π/6\pi / 6

Answer

π/4\pi / 4

Explanation

Solution

I=0π/2sinx1+cos2xdxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { 1 + \cos ^ { 2 } x } d x

Put sinxdx=dt- \sin x d x = d t

Then I=10dt1+t2=01dt1+t2=[tan1t]01=π4I = \int _ { 1 } ^ { 0 } \frac { - d t } { 1 + t ^ { 2 } } = \int _ { 0 } ^ { 1 } \frac { d t } { 1 + t ^ { 2 } } = \left[ \tan ^ { - 1 } t \right] _ { 0 } ^ { 1 } = \frac { \pi } { 4 } .