Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi / 2 } \frac { d x } { 1 + \tan ^ { 3 } x }\) is...

The value of 0π/2dx1+tan3x\int _ { 0 } ^ { \pi / 2 } \frac { d x } { 1 + \tan ^ { 3 } x } is

A

0

B

1

C

π2\frac { \pi } { 2 }

D

π4\frac { \pi } { 4 }

Answer

π4\frac { \pi } { 4 }

Explanation

Solution

I=0π/2dx1+tan3x=0π/2cos3xsin3x+cosx3dxI = \int _ { 0 } ^ { \pi / 2 } \frac { d x } { 1 + \tan ^ { 3 } x } = \int _ { 0 } ^ { \pi / 2 } \frac { \cos ^ { 3 } x } { \sin ^ { 3 } x + \cos x ^ { 3 } } d x …..(i)

=0π/2sin3xcos3x+sin3xdx= \int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 3 } x } { \cos ^ { 3 } x + \sin ^ { 3 } x } d x .....(ii)

Adding (i) and (ii), we get

2I=0π/2dxI=π42 I = \int _ { 0 } ^ { \pi / 2 } d x \Rightarrow I = \frac { \pi } { 4 }