Solveeit Logo

Question

Question: The value of \(\int _ { - 1 } ^ { 3 } \tan ^ { - 1 } \left( \frac { x } { x ^ { 2 } + 1 } \right) +...

The value of 13tan1(xx2+1)+tan1(x2+1x)dx\int _ { - 1 } ^ { 3 } \tan ^ { - 1 } \left( \frac { x } { x ^ { 2 } + 1 } \right) + \tan ^ { - 1 } \left( \frac { x ^ { 2 } + 1 } { x } \right) d x is

A

2π2 \pi

B

π\pi

C

π2\frac { \pi } { 2 }

D

π4\frac { \pi } { 4 }

Answer

2π2 \pi

Explanation

Solution

I=13[tan1(xx2+1)+cot1(xx2+1)]dxI = \int _ { - 1 } ^ { 3 } \left[ \tan ^ { - 1 } \left( \frac { x } { x ^ { 2 } + 1 } \right) + \cot ^ { - 1 } \left( \frac { x } { x ^ { 2 } + 1 } \right) \right] d x

(tan1(x)+cot1(x)=π2)\left( \because \tan ^ { - 1 } ( x ) + \cot ^ { - 1 } ( x ) = \frac { \pi } { 2 } \right).