Solveeit Logo

Question

Question: The value of \[\int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx\] , where [.] denotes ...

The value of \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx , where [.] denotes the greatest integer function, is
(a) -2
(b) -1
(c) 0
(d) 1

Explanation

Solution

Hint: Here, we will form a piecewise function of f(x) in differential intervals and then we will find the value of the given integration.

Complete step-by-step answer:
Since, we have to integrate the function from -2 to 2.
We can divide it into 2 intervals.
The first interval can be x(2,0)x\in \left( -2,0 \right) and the second interval can be x(0,2)x\in \left( 0,2 \right).
We know that fractional part of x, that is {x} is given as:
\begin{aligned} & \left\\{ x \right\\}=x-\left[ x \right] \\\ & \left[ x \right]=x-\left\\{ x \right\\} \\\ \end{aligned}
When we are talking about positive integers, that is , when x(0,2)x\in \left( 0,2 \right), |x| always gives a result x.
Since, \left\\{ x \right\\}\in \left( 0,1 \right), so x-\left\\{ x \right\\}, is always less than x.
This implies that in the interval (0, 2):
x>x-\left\\{ x \right\\}
So, \min \left\\{ |x|,\left[ x \right] \right\\} is [x].
Now, when we are talking about negative integers, that is when x(2,0)x\in \left( -2,0 \right). We know that |x| is always greater than zero.
Since, all the x in the interval (-2, 0) are negative, we can write that [x]<0\left[ x \right]<0.
So, in the interval x(2,0)x\in \left( -2,0 \right), \min \left\\{ |x|,\left[ x \right] \right\\} is [x].
Therefore, we can write:
\int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=\int_{-2}^{-1}{\left[ x \right]dx+\int_{-1}^{0}{\left[ x \right]dx+\int_{0}^{1}{\left[ x \right].dx}+\int_{1}^{2}{\left[ x \right]dx}...........\left( 1 \right)}}
We know that the greatest integer function of x always returns an integer which is less than or equal to x. Therefore, we have:
21[x]dx=212dx\int_{-2}^{-1}{\left[ x \right]dx=\int_{-2}^{-1}{-2dx}}
10[x]dx=101dx\int_{-1}^{0}{\left[ x \right]dx=\int_{-1}^{0}{-1dx}}
01[x]dx=010dx\int_{0}^{1}{\left[ x \right]dx=\int_{0}^{1}{0dx}}
12[x]dx=121dx\int_{1}^{2}{\left[ x \right]dx=\int_{1}^{2}{1dx}}
On substituting these values in equation (1), we get:

& \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=\int_{-2}^{-1}{-2dx+\int_{-1}^{0}{-1dx+\int_{0}^{1}{0dx}+\int_{1}^{2}{1dx}}} \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2\int_{-2}^{-1}{dx+-1\int_{-1}^{0}{dx+0+\int_{1}^{2}{dx}}} \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2\left[ x \right]_{-2}^{-1}-1\left[ x \right]_{-1}^{0}+\left[ x \right]_{1}^{2} \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2\left\\{ -1-\left( -2 \right) \right\\}-1\left\\{ 0-\left( -1 \right) \right\\}+\left( 2-1 \right) \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2\left( -1+2 \right)-1\left( 0+1 \right)+1 \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2\times 1-1+1 \\\ & \Rightarrow \int_{-2}^{2}{\min .\left\\{ |x|,\left[ x \right] \right\\}}dx=-2 \\\ \end{aligned}$$ So, the value of given integration is -2. Hence, option (a) is the correct answer. Note: Students should note here that it is necessary to form piecewise functions here because the function behaves differently in different intervals. It is important to remember that $\left[ x \right]=x-\left\\{ x \right\\}$ and $\left\\{ x \right\\}\in \left( 0,1 \right)$.