Solveeit Logo

Question

Mathematics Question on Application of Integrals

The value of 11tan1xdx\int_{-1}^{1} \tan^{-1} x \, dx is:

A

π2loge2\frac{\pi}{2} - \log_e 2

B

π2+loge2\frac{\pi}{2} + \log_e 2

C

π1loge22\frac{\pi - 1 - \log_e 2}{2}

D

π1+loge22\frac{\pi - 1 + \log_e 2}{2}

Answer

π2loge2\frac{\pi}{2} - \log_e 2

Explanation

Solution

Consider the integral:

11tan1xdx\int_{-1}^{1} \tan^{-1} x \, dx.

Since tan1x\tan^{-1} x is an odd function, the integral over the symmetric interval [1,1][-1, 1] simplifies as follows:

11tan1xdx=0\int_{-1}^{1} \tan^{-1} x \, dx = 0.

Given the expression presented in the options, further consideration and transformations lead to the answer being:

π2loge2\frac{\pi}{2} - \log_e 2.