Solveeit Logo

Question

Question: The value of \(\int_0^\pi {\log \left( {1 + \cos x} \right)dx} \) is A. \( - \dfrac{\pi }{2}\log 2...

The value of 0πlog(1+cosx)dx\int_0^\pi {\log \left( {1 + \cos x} \right)dx} is
A. π2log2 - \dfrac{\pi }{2}\log 2
B. πlog12\pi \log \dfrac{1}{2}
C. πlog2 - \pi \log 2
D. π2log2\dfrac{\pi }{2}\log 2

Explanation

Solution

Hint: We have to solve this question step by step by assuming the integration values as variables. By simple integration method by using the properties of integration and logarithms. Then, we also use a bit of derivation and eventually substitute all the real values in the assumed variables to get the answer by putting the limits in our calculated result.

Complete step-by-step answer:
Let us assume I=0πlog(1+cosx)dxI = \int_0^\pi {\log \left( {1 + \cos x} \right)dx} …… (1)
Now, using identity 0af(x)dx=0af(ax)dx\int_0^a {f\left( x \right)dx = } \int_0^a {f\left( {a - x} \right)dx} , it can be rewritten as
I=0πlog(1+cos(πx))dxI = \int_0^\pi {\log \left( {1 + \cos \left( {\pi - x} \right)} \right)dx}
Now, as we know cos(πx)=cosx\cos \left( {\pi - x} \right) = - \cos x
I=0πlog(1cosx)dxI = \int_0^\pi {\log \left( {1 - \cos x} \right)dx} …… (2)
Now, adding (1) and (2) we get

2I=0πlog(1+cosx)dx+0πlog(1cosx)dx 2I=0πlog(1+cosx)dx+log(1cosx)dx  2I = \int_0^\pi {\log \left( {1 + \cos x} \right)dx} + \int_0^\pi {\log \left( {1 - \cos x} \right)dx} \\\ 2I = \int_0^\pi {\log \left( {1 + \cos x} \right)dx} + \log \left( {1 - \cos x} \right)dx \\\

Here, we use the multiplication property of log i.e. log(a)+log(b) = log(a.b)
2I=0πlog[(1+cosx)(1cosx)]dx 2I=0πlog[(1cos2x)]dx  2I = \int_0^\pi {\log \left[ {\left( {1 + \cos x} \right)\left( {1 - \cos x} \right)} \right]dx} \\\ 2I = \int_0^\pi {\log \left[ {\left( {1 - {{\cos }^2}x} \right)} \right]dx} \\\
Now, we know that 1cos2x=sin2x1 - {\cos ^2}x = {\sin ^2}x
So, 2I=0πlog(sin2x)dx2I = \int_0^\pi {\log \left( {{{\sin }^2}x} \right)dx}
Now, we use another property of log i.e. logab=bloga\log {a^b} = b\log a
2I=0π2log(sinx)dx 2I=20πlog(sinx)dx I=0πlog(sinx)dx  2I = \int_0^\pi {2\log \left( {\sin x} \right)dx} \\\ 2I = 2\int_0^\pi {\log \left( {\sin x} \right)dx} \\\ I = \int_0^\pi {\log \left( {\sin x} \right)dx} \\\
To solve this, we need to use another property of integration which is
02af(x)dx=20af(x)dx\int_0^{2a} {f\left( x \right)dx = 2\int_0^a {f\left( x \right)dx} } if f(2ax)=f(x)f\left( {2a - x} \right) = f\left( x \right)
Here, f(x)=logsinxf\left( x \right) = \log \sin x
f(πx)=log[sin(πx)]dx=log(sinx)dx=f(x) I=0πlog(sinx)dx=20π2log(sinx)dx  f\left( {\pi - x} \right) = \log \left[ {\sin \left( {\pi - x} \right)} \right]dx = \log \left( {\sin x} \right)dx = f\left( x \right) \\\ \therefore I = \int_0^\pi {\log \left( {\sin x} \right)dx = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x} \right)dx} } \\\
Now, again assuming J=0π2log(sinx)dxJ = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x} \right)dx} ……(3)
For solving JJ we use the property 0af(x)dx=0af(ax)dx- \int_0^a {f\left( x \right)dx = \int_0^a {f\left( {a - x} \right)dx} }
J=0π2log[sin(π2x)]dx\therefore J = \int_0^{\dfrac{\pi }{2}} {\log \left[ {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right]dx}
J=0π2log(cosx)dxJ = \int_0^{\dfrac{\pi }{2}} {\log \left( {\cos x} \right)dx} …. (4)
Adding (3) and (4)
2J=0π2log(sinx)dx+0π2log(cosx)dx2J = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x} \right)dx} + \int_0^{\dfrac{\pi }{2}} {\log \left( {\cos x} \right)dx}
Again by using the multiplication property of log
2J=0π2log(sinx.cosx)dx2J = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x.\cos x} \right)dx}
Now, divide and multiply by 2
2J=0π2log(2sinx.cosx2)dx2J = \int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2\sin x.\cos x}}{2}} \right)dx}
Now, using the division property of log i.e. log(ab)=log(a)log(b)\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)
2J=0π2[log(sin2x)log2]dx2J = \int_0^{\dfrac{\pi }{2}} {\left[ {\log \left( {\sin 2x} \right) - \log 2} \right]dx}
2J=0π2log(sin2x)dx0π2log(2)dx2J = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2x} \right)dx - \int_0^{\dfrac{\pi }{2}} {\log \left( 2 \right)dx} } …. (5)
Now, assuming K=0π2log(sin2x)dxK = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2x} \right)dx}
Let 2x =t
Differentiating on both sides
2=dtdx dx=dt2  2 = \dfrac{{dt}}{{dx}} \\\ dx = \dfrac{{dt}}{2} \\\
Now, finding the limits
If x = 0, then value of t = 2(0) = 0
If x = π2\dfrac{\pi }{2}, then value of t = 2(π2\dfrac{\pi }{2}) = π\pi
\therefore Putting the values of t and dtdt and changing the limits,
K=0π2log(sin2x)dx K=0πlog(sint)dt2 K=120πlog(sint)dt  K = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2x} \right)dx} \\\ K = \int_0^\pi {\log \left( {\sin t} \right)\dfrac{{dt}}{2}} \\\ K = \dfrac{1}{2}\int_0^\pi {\log \left( {\sin t} \right)dt} \\\
Again using this property,
02af(x)dx=20af(x)dx\int_0^{2a} {f\left( x \right)dx = 2\int_0^a {f\left( x \right)dx} } if f(2ax)=f(x)f\left( {2a - x} \right) = f\left( x \right)
f(t)=logsint f(2at)=f(2πt)=logsint  f\left( t \right) = \log \sin t \\\ f(2a - t) = f\left( {2\pi - t} \right) = \log \sin t \\\
K=120πlogsintdt=12×20π2logsintdt=0π2logsintdt\therefore K = \dfrac{1}{2}\int_0^\pi {\log \sin tdt = \dfrac{1}{2} \times 2\int_0^{\dfrac{\pi }{2}} {\log \sin tdt = } } \int_0^{\dfrac{\pi }{2}} {\log \sin tdt}
Now, using the property
abf(x)dx=abf(t)dt\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( t \right)dt}
K=0π2logsinxdxK = \int_0^{\dfrac{\pi }{2}} {\log \sin x dx}
Substituting value of KK in (5)
2J=0π2log(sinx)dx0π2log(2)dx2J = \int_0^{\dfrac{\pi }{2}} {\log \left( {\sin x} \right)dx - \int_0^{\dfrac{\pi }{2}} {\log \left( 2 \right)dx} }
Now, by using (3) we get
2J=Jlog(2)0π21.dx 2JJ=log(2)[x]0π2 J=log2[π20] J=log2[π2] J=π2log2  2J = J - \log \left( 2 \right)\int_0^{\dfrac{\pi }{2}} {1.dx} \\\ 2J - J = - \log \left( 2 \right)\left[ x \right]_0^{\dfrac{\pi }{2}} \\\ J = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right] \\\ J = - \log 2\left[ {\dfrac{\pi }{2}} \right] \\\ J = - \dfrac{\pi }{2}\log 2 \\\
Hence, I=2J=2×π2log2=πlog2I = 2J = 2 \times - \dfrac{\pi }{2}\log 2 = - \pi \log 2
Correct option is C.

Note: This is a very important question if you want to learn integration. Solving integration by using its properties is done in the question three times. Always remember the properties of integration and solve the question very carefully as every step can be very confusing. Thus, a simple mistake will lead to a lot of ambiguities. Therefore, this is the only way to reach for the answer.