Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of 0π/2dx1+tanx\int_{0}^{\pi /2}{\frac{dx}{1+\tan x}} is

A

π2\frac{\pi }{2}

B

00

C

π4\frac{\pi }{4}

D

π8\frac{\pi }{8}

Answer

π4\frac{\pi }{4}

Explanation

Solution

Let l=dx1+tanxl=\int{\frac{dx}{1+\tan x}}
\Rightarrow lcosxsinx+cosxdxl\int{\frac{\cos \,x}{\sin x+\cos x}}\,dx .. (i)
and l=0π/2cos(π2x)sin(π2x)+cos(π2x)dxl=\int_{0}^{\pi /2}{\frac{\cos \,\left( \frac{\pi }{2}-x \right)}{\sin \,\left( \frac{\pi }{2}-x \right)+\cos \left( \frac{\pi }{2}-x \right)}}\,dx
\Rightarrow l=0π/2sinxcosx+sinxdxl=\int_{0}^{\pi /2}{\frac{\sin x}{\cos x+\sin x}dx} .. (ii)
\left\\{ \because \,\int_{0}^{a}{f(x)\,dx=\int_{0}^{a}{f(a-x)\,dx}} \right\\}
On adding Eqs. (i) and (ii), we get
2l=0π/2sinx+cosxsinx+cosxdx=0π/21dx=[x]0π/22l=\int_{0}^{\pi /2}{\frac{\sin x+\cos x}{\sin x+\cos x}dx=\int_{0}^{\pi /2}{1\,dx=[x]_{0}^{\pi /2}}}
\Rightarrow 2l=π2l=π42l=\frac{\pi }{2}\,\,\,\,\,\Rightarrow \,\,\,\,l=\frac{\pi }{4}