Question
Mathematics Question on integral
The value of ∫02π log(4+3cosx4+3sinx)dx is
A
2
B
43
C
0
D
-2
Answer
0
Explanation
Solution
Let I=∫02π log(4+3cosx4+3sinx)dx………………....(1)
⇒I=∫02πlog[4+3cos(2π−x)4+3sin(2π−x)]dx (∫0aƒ(x)dx=∫0aƒ(a-x)dx)
⇒I=∫02π log(4+3sinx4+3cosx)dx…………………...(2)
Adding(1)and(2),we obtain
2I=∫02π{log(4+3cosx4+3sinx)+log(4+3sinx4+3cosx)}dx
⇒2I=∫02π log1dx
⇒2I=∫02π0dx
⇒I=0
Hence, the correct Answer is C.