Solveeit Logo

Question

Mathematics Question on integral

The value of 0π2\int_{0}^{\frac{\pi}{2}} log(4+3sinx4+3cosx\frac{4+3\,sin\,x}{4+3\,cos\,x})dx is

A

2

B

34\frac{3}{4}

C

0

D

-2

Answer

0

Explanation

Solution

Let I=0π2\int_{0}^{\frac{\pi}{2}} log(4+3sinx4+3cosx\frac{4+3\,sin\,x}{4+3\,cos\,x})dx………………....(1)

⇒I=0π2\int_{0}^{\frac{\pi}{2}}log[4+3sin(π2x)4+3cos(π2x)\frac{4+3\,sin\,(\frac{\pi}{2}-x)}{4+3\,cos\,(\frac{\pi}{2}-x)}]dx (0a\int_{0}^{a}ƒ(x)dx=0a\int_{0}^{a}ƒ(a-x)dx)

⇒I=0π2\int_{0}^{\frac{\pi}{2}} log(4+3cosx4+3sinx\frac{4+3\,cos\,x}{4+3\,sin\,x})dx…………………...(2)

Adding(1)and(2),we obtain

2I=0π2\int_{0}^{\frac{\pi}{2}}{log(4+3sinx4+3cosx\frac{4+3\,sin\,x}{4+3\,cos\,x})+log(4+3cosx4+3sinx\frac{4+3\,cos\,x}{4+3\,sin\,x})}dx

⇒2I=0π2\int_{0}^{\frac{\pi}{2}} log1dx

⇒2I=0π2\int_{0}^{\frac{\pi}{2}}0dx

⇒I=0

Hence, the correct Answer is C.