Solveeit Logo

Question

Mathematics Question on integral

The value of 01(2x33x2x+1)13dx\int_{0}^{1} \left(2x^3 - 3x^2 - x + 1\right)^{\frac{1}{3}} \, dxis equal to:

A

0

B

1

C

2

D

-1

Answer

0

Explanation

Solution

The given integral is: I=01(2x33x2x+1)1/3dx.I = \int_0^1 \left(2x^3 - 3x^2 - x + 1\right)^{1/3} \, dx.

Applying the King’s property of definite integrals, replace x(1x)x \to (1 - x): I=01[2(1x)33(1x)2(1x)+1]1/3dx.I = \int_0^1 \left[2(1 - x)^3 - 3(1 - x)^2 - (1 - x) + 1\right]^{1/3} \, dx.
Simplify the expression inside the integral: (1x)3=13x+3x2x3,(1 - x)^3 = 1 - 3x + 3x^2 - x^3, (1x)2=12x+x2.(1 - x)^2 = 1 - 2x + x^2.

Substitute these into the equation: 2(1x)3=2(13x+3x2x3)=26x+6x22x3,2(1 - x)^3 = 2(1 - 3x + 3x^2 - x^3) = 2 - 6x + 6x^2 - 2x^3, 3(1x)2=3(12x+x2)=3+6x3x2,-3(1 - x)^2 = -3(1 - 2x + x^2) = -3 + 6x - 3x^2, (1x)=1+x,and +1 remains unchanged.-(1 - x) = -1 + x, \quad \text{and } +1 \text{ remains unchanged.}
Combine all terms: 2(1x)33(1x)2(1x)+1=(26x+6x22x3)+(3+6x3x2)+(1+x)+1.2(1 - x)^3 - 3(1 - x)^2 - (1 - x) + 1 = (2 - 6x + 6x^2 - 2x^3) + (-3 + 6x - 3x^2) + (-1 + x) + 1.
Simplify: =26x+6x22x33+6x3x21+x+1.= 2 - 6x + 6x^2 - 2x^3 - 3 + 6x - 3x^2 - 1 + x + 1.
=231+16x+6x+x+6x23x22x3.= 2 - 3 - 1 + 1 - 6x + 6x + x + 6x^2 - 3x^2 - 2x^3.
Final simplified expression: =1+x+3x22x3.= -1 + x + 3x^2 - 2x^3.

The integral becomes: I=01(1+x+3x22x3)1/3dx.I = \int_0^1 \left(-1 + x + 3x^2 - 2x^3\right)^{1/3} \, dx.
Thus, after applying King’s property, the integral is rewritten as: I=01(2(1x)33(1x)2(1x)+1)1/3dx.I = \int_0^1 \left(2(1 - x)^3 - 3(1 - x)^2 - (1 - x) + 1\right)^{1/3} \, dx.

Simplify the expression inside the integral: I=01[2x3+3x2+x1]1/3dx.I = \int_0^1 \left[-2x^3 + 3x^2 + x - 1\right]^{1/3} \, dx.
Using the property of definite integrals, I=01f(x)dx=01f(1x)dxI = \int_0^1 f(x) \, dx = \int_0^1 f(1 - x) \, dx,
the integral becomes: I=01[2x33x2x+1]1/3dx.I = -\int_0^1 \left[2x^3 - 3x^2 - x + 1\right]^{1/3} \, dx.

Thus: I=I.I = -I. Adding II to both sides: 2I=0I=0.2I = 0 \quad \Rightarrow \quad I = 0.
Therefore, the final answer is: I=0.I = 0.