Question
Mathematics Question on integral
The value of ∫01(2x3−3x2−x+1)31dxis equal to:
0
1
2
-1
0
Solution
The given integral is: I=∫01(2x3−3x2−x+1)1/3dx.
Applying the King’s property of definite integrals, replace x→(1−x): I=∫01[2(1−x)3−3(1−x)2−(1−x)+1]1/3dx.
Simplify the expression inside the integral: (1−x)3=1−3x+3x2−x3, (1−x)2=1−2x+x2.
Substitute these into the equation: 2(1−x)3=2(1−3x+3x2−x3)=2−6x+6x2−2x3, −3(1−x)2=−3(1−2x+x2)=−3+6x−3x2, −(1−x)=−1+x,and +1 remains unchanged.
Combine all terms: 2(1−x)3−3(1−x)2−(1−x)+1=(2−6x+6x2−2x3)+(−3+6x−3x2)+(−1+x)+1.
Simplify: =2−6x+6x2−2x3−3+6x−3x2−1+x+1.
=2−3−1+1−6x+6x+x+6x2−3x2−2x3.
Final simplified expression: =−1+x+3x2−2x3.
The integral becomes: I=∫01(−1+x+3x2−2x3)1/3dx.
Thus, after applying King’s property, the integral is rewritten as: I=∫01(2(1−x)3−3(1−x)2−(1−x)+1)1/3dx.
Simplify the expression inside the integral: I=∫01[−2x3+3x2+x−1]1/3dx.
Using the property of definite integrals, I=∫01f(x)dx=∫01f(1−x)dx,
the integral becomes: I=−∫01[2x3−3x2−x+1]1/3dx.
Thus: I=−I. Adding I to both sides: 2I=0⇒I=0.
Therefore, the final answer is: I=0.