Solveeit Logo

Question

Question: The value of \(\sum _ { r = 1 } ^ { n } \log \left( \frac { a ^ { r } } { b ^ { r - 1 } } \right)\) ...

The value of r=1nlog(arbr1)\sum _ { r = 1 } ^ { n } \log \left( \frac { a ^ { r } } { b ^ { r - 1 } } \right) is.

A

n2log(anbn)\frac { n } { 2 } \log \left( \frac { a ^ { n } } { b ^ { n } } \right)

B

n2log(an+1bn)\frac { n } { 2 } \log \left( \frac { a ^ { n + 1 } } { b ^ { n } } \right)

C

n2log(an+1bn1)\frac { n } { 2 } \log \left( \frac { a ^ { n + 1 } } { b ^ { n - 1 } } \right)

D

n2log(an+1bn+1)\frac { n } { 2 } \log \left( \frac { a ^ { n + 1 } } { b ^ { n + 1 } } \right)

Answer

n2log(an+1bn1)\frac { n } { 2 } \log \left( \frac { a ^ { n + 1 } } { b ^ { n - 1 } } \right)

Explanation

Solution

The given series is

This is an A.P. with first term loga\log a and the common difference log(a2b)loga=log(ab)\log \left( \frac { a ^ { 2 } } { b } \right) - \log a = \log \left( \frac { a } { b } \right)

Therefore the sum of nn terms is

n2[loga+log(anbn1)]=n2log(an+1bn1)\frac { n } { 2 } \left[ \log a + \log \left( \frac { a ^ { n } } { b ^ { n - 1 } } \right) \right] = \frac { n } { 2 } \log \left( \frac { a ^ { n + 1 } } { b ^ { n - 1 } } \right) .

Trick : Check for n=1,2n = 1,2.