Solveeit Logo

Question

Question: The value of \(\lambda\) for which the four points \(2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k...

The value of λ\lambda for which the four points 2i+3jk,i+2j+3k,3i+4j2k,iλj+6k2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } , \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - 2 \mathbf { k } , \mathbf { i } - \lambda \mathbf { j } + 6 \mathbf { k } are coplanar

A

8

B

0

C

– 2

D

6

Answer

– 2

Explanation

Solution

The given four points are coplanar

\therefore x(2i+3jk)+y(i+2j+3k)+z(3i+4j2k)+w(iλj+6k)=0x ( 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } ) + y ( \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) + z ( 3 \mathbf { i } + 4 \mathbf { j } - 2 \mathbf { k } ) + w ( \mathbf { i } - \lambda \mathbf { j } + 6 \mathbf { k } ) = \mathbf { 0 } and x+y+z+w=0x + y + z + w = 0,

where x,y,zx , y , z , w are not all zero.

(2x+y+3z+w)i+(3x+2y+4zλw)j( 2 x + y + 3 z + w ) \mathbf { i } + ( 3 x + 2 y + 4 z - \lambda w ) \mathbf { j }+ (x+3y2z+6w)k=0( - x + 3 y - 2 z + 6 w ) \mathbf { k } = 0 and x+y+z+w=0x + y + z + w = 0

2x+y+3z+w=02 x + y + 3 z + w = 0 ,3x+2y+4zλw=03 x + 2 y + 4 z - \lambda w = 0, x+3y2z+6w=0- x + 3 y - 2 z + 6 w = 0 and x+y+z+w=0x + y + z + w = 0

For non-trivial solution, 2131324λ13261111=0\left| \begin{array} { c c c c } 2 & 1 & 3 & 1 \\ 3 & 2 & 4 & - \lambda \\ - 1 & 3 & - 2 & 6 \\ 1 & 1 & 1 & 1 \end{array} \right| = 0

2131000(λ+2)13261111=0\left| \begin{array} { c c c c } 2 & 1 & 3 & 1 \\ 0 & 0 & 0 & - ( \lambda + 2 ) \\ - 1 & 3 & - 2 & 6 \\ 1 & 1 & 1 & 1 \end{array} \right| = 0 , Operating [R2R2R1R4]\left[ R _ { 2 } \rightarrow R _ { 2 } - R _ { 1 } - R _ { 4 } \right]

(λ+2)- ( \lambda + 2 ) 213132111=0\left| \begin{array} { c c c } 2 & 1 & 3 \\ - 1 & 3 & - 2 \\ 1 & 1 & 1 \end{array} \right| = 0λ=2\lambda = - 2