Question
Question: The value of \[I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan...
The value of I=∫π/25π/2etan−1(sinx)+etan−1(cosx)etan−1(sinx)dx is
A. 1
B. π
C. e
D. 2π
Solution
Hint: Split the integral into two different integrals using limits. And then use property of definite integrals to evaluate the integral.
Complete step-by-step answer:
According to the question, the given integral is:
⇒I=∫π/25π/2etan−1(sinx)+etan−1(cosx)etan−1(sinx)dx
The limit of the integration is from the 2π to 25π. According to the property of definite integral, we can split the limit into two parts i.e. from 2π to π and from π to 25π. Doing so, we’ll get:⇒I=∫π/2πetan−1(sinx)+etan−1(cosx)etan−1(sinx)dx+∫π5π/2etan−1(sinx)+etan−1(cosx)etan−1(sinx)dx.....(i)
Now, another property of definite integral is:
⇒∫abf(x)dx=∫abf(a+b−x)dx.
Using this property for the above integral, we’ll get:
⇒$$I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {3\pi /2 - x} \right)} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {7\pi /2 - x} \right)} \right)}}}}dxWeknowthat\sin \left( {3\pi /2 - x} \right) = \cos x,\cos \left( {3\pi /2 - x} \right) = \sin x,\sin \left( {7\pi /2 - x} \right) = \cos xand\cos \left( {7\pi /2 - x} \right) = \sin x.Usingthesevalues,we’llget:I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx .....(ii)Addingequation(i)and(ii)$$, we’ll get:
Thus the value of integral is π.
Note: We can split a definite integral up into two integrals with the same integrand but different limits. Integration can be interpreted as the area under the curve within a particular limit. By splitting the integral into two parts means we are splitting the areas under the curve into two different continuous limits. The value of the integral is the sum of two areas.