Solveeit Logo

Question

Question: The value of \[I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan...

The value of I=π/25π/2etan1(sinx)etan1(sinx)+etan1(cosx)dxI = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx is
A. 1
B. π\pi
C. ee
D. π2\dfrac{\pi }{2}

Explanation

Solution

Hint: Split the integral into two different integrals using limits. And then use property of definite integrals to evaluate the integral.

Complete step-by-step answer:
According to the question, the given integral is:
I=π/25π/2etan1(sinx)etan1(sinx)+etan1(cosx)dx\Rightarrow I = \smallint _{\pi /2}^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx
The limit of the integration is from the π2\dfrac{\pi }{2} to 5π2\dfrac{{5\pi }}{2}. According to the property of definite integral, we can split the limit into two parts i.e. from π2\dfrac{\pi }{2} to π\pi and from π\pi to 5π2\dfrac{{5\pi }}{2}. Doing so, we’ll get:I=π/2πetan1(sinx)etan1(sinx)+etan1(cosx)dx+π5π/2etan1(sinx)etan1(sinx)+etan1(cosx)dx.....(i) \Rightarrow I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx .....(i)
Now, another property of definite integral is:
abf(x)dx=abf(a+bx)dx\Rightarrow \smallint _a^bf(x)dx = \smallint _a^bf(a + b - x)dx.
Using this property for the above integral, we’ll get:
\Rightarrow $$I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {3\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {3\pi /2 - x} \right)} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\sin \left( {7\pi /2 - x} \right)} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\cos \left( {7\pi /2 - x} \right)} \right)}}}}dxWeknowthat We know that\sin \left( {3\pi /2 - x} \right) = \cos x,\cos \left( {3\pi /2 - x} \right) = \sin x,\sin \left( {7\pi /2 - x} \right) = \cos xandand\cos \left( {7\pi /2 - x} \right) = \sin x.Usingthesevalues,wellget:. Using these values, we’ll get: I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}}}}{{{e^{{{\tan }^{ - 1}}\left( {\cos x} \right)}} + {e^{{{\tan }^{ - 1}}\left( {\sin x} \right)}}}}dx .....(ii)Addingequation Adding equation(i)andand(ii)$$, we’ll get:

2I=π/2πetan1(sinx)+etan1(cosx)etan1(sinx)+etan1(cosx)dx+π5π/2etan1(sinx)+etan1(cosx)etan1(sinx)+etan1(cosx)dx 2I=π/2πdx+π5π/2dx  \Rightarrow 2I = \smallint _{\pi /2}^\pi \dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx + \smallint _\pi ^{5\pi /2}\dfrac{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}{{{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}dx \\\ \Rightarrow 2I = \smallint _{\pi /2}^\pi dx + \smallint _\pi ^{5\pi /2}dx \\\ 2I=[x]π/2π+[x]π5π/2 2I=ππ2+5π2π 2I=2π I=π  \Rightarrow 2I = \left[ x \right]_{\pi /2}^\pi + \left[ x \right]_\pi ^{5\pi /2} \\\ \Rightarrow 2I = \pi - \dfrac{\pi }{2} + \dfrac{{5\pi }}{2} - \pi \\\ \Rightarrow 2I = 2\pi \\\ \Rightarrow I = \pi \\\

Thus the value of integral is π\pi .

Note: We can split a definite integral up into two integrals with the same integrand but different limits. Integration can be interpreted as the area under the curve within a particular limit. By splitting the integral into two parts means we are splitting the areas under the curve into two different continuous limits. The value of the integral is the sum of two areas.