Solveeit Logo

Question

Question: The value of i log (x –i) + i<sup>2</sup>p + i<sup>3</sup> log (x + i) + i<sup>4</sup> (2 tan<sup>–...

The value of

i log (x –i) + i2p + i3 log (x + i) + i4 (2 tan–1x) where x > 0 and i = 1\sqrt{- 1}is

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

I log xix+i\frac{x - i}{x + i}– p + 2 tan–1 x = z (let)

\ log (x+ixi)\left( \frac{x + i}{x–i} \right) = i (z + p –2 tan–1 x)

or x+ixi\frac{x + i}{x–i}= eiq where q = z + p – 2 tan–1 x

x + i = x cos q + i x sin q + i sin q – i cos q

̃ x = cot θ2\frac{\theta}{2} ̃ q = 2 cot–1x

or z + p – 2 tan–1 x = 2 cot–1 x ̃ z = 0