Question
Mathematics Question on Integrals of Some Particular Functions
The value of I=0∫4π(tann+1x)dx+210∫2πtann−1(x/2)dx is equal to
n1
2n+1n+2
n2n−1
3n−22n−3
n1
Solution
Given,
I=\int_ \limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\frac{1}{2} \int_{0}^{\pi / 2} \tan ^{n-1}\left(\frac{x}{2}\right) d x
In second integral, put t=2x
⇒dx=2dt
⇒ Also, when x=0 then t=0,
When x=π/2, then t=π/4
Then, I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\int_{0}^{\pi / 4} \tan ^{n-1} t d t
I=\int_\limits{0}^{\pi / 4} \tan ^{n+1} x \cdot d x+\int_\limits{0}^{\pi / 4} \tan ^{n-1} x d x
\left\\{\because \int_\limits{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y\right\\}
\Rightarrow I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x+\tan ^{n-1} x\right) d x
\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x \cdot\left(\tan ^{2} x+1\right) d x
\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x\left(\sec ^{2} x\right) d x
Put t=tanx
⇒dt=sec2xdx
Also, when x=0, then t=0
when x=π/4, then t=1
I=∫01tn−1dt=[ntn]01=n1