Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of I=0π4(tann+1x)dx+120π2tann1(x/2)dxI = \int \limits^ \frac{\pi}{4}_{0}\left(tan^{n+1} x\right)dx + \frac{1}{2} \int \limits^ \frac{\pi}{2}_{0} tan^{n-1} \left(x / 2\right)dx is equal to

A

1n\frac{1}{n}

B

n+22n+1\frac{n+2}{2n+1}

C

2n1n\frac{2n-1}{n}

D

2n33n2\frac{2n-3}{3n -2}

Answer

1n\frac{1}{n}

Explanation

Solution

Given,
I=\int_ \limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\frac{1}{2} \int_{0}^{\pi / 2} \tan ^{n-1}\left(\frac{x}{2}\right) d x
In second integral, put t=x2t=\frac{x}{2}
dx=2dt\Rightarrow d x=2 d t
\Rightarrow Also, when x=0x=0 then t=0t=0,
When x=π/2, then t=π/4 x=\pi / 2, \text { then } t=\pi / 4
Then, I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\int_{0}^{\pi / 4} \tan ^{n-1} t d t
I=\int_\limits{0}^{\pi / 4} \tan ^{n+1} x \cdot d x+\int_\limits{0}^{\pi / 4} \tan ^{n-1} x d x
\left\\{\because \int_\limits{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y\right\\}
\Rightarrow I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x+\tan ^{n-1} x\right) d x
\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x \cdot\left(\tan ^{2} x+1\right) d x
\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x\left(\sec ^{2} x\right) d x
Put t=tanxt=\tan x
dt=sec2xdx\Rightarrow d t=\sec ^{2} x d x
Also, when x=0x=0, then t=0t=0
when x=π/4x=\pi / 4, then t=1t=1
I=01tn1dt=[tnn]01=1nI=\int_{0}^{1} t^{n-1} d t=\left[\frac{t^{n}}{n}\right]_{0}^{1}=\frac{1}{n}