Solveeit Logo

Question

Question: The value of given trigonometric expression \(\cos ec 2A - \cot 2A - \tan A = \)....

The value of given trigonometric expression cosec2Acot2AtanA=\cos ec 2A - \cot 2A - \tan A = .

Explanation

Solution

Hint- In this question, we use the concept of double angle trigonometric identities. Whenever we face a double angle in any problem so we can convert it into half of that angle. We use trigonometric identities sin2A=2sinAcosA \sin 2A = 2\sin A\cos A{\text{ }} and cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A .

Complete step-by-step solution -
Now, we have to find value of cosec2Acot2AtanA\cos ec 2A - \cot 2A - \tan A
As we know we can convert double angle trigonometric terms like sin2A\sin 2A and cos2A\cos 2A into half of that angle like sinAandcosA.\sin A and \cos A.
So, first we convert cosec2A\cos ec 2A and cot2A\cot 2A into sin2A\sin 2A and cos2A\cos 2A
cosec2Acot2AtanA 1sin2Acos2Asin2AtanA 1cos2Asin2AtanA  \Rightarrow \cos ec 2A - \cot 2A - \tan A \\\ \Rightarrow \dfrac{1}{{\sin 2A}} - \frac{{\cos 2A}}{{\sin 2A}} - \tan A \\\ \Rightarrow \dfrac{{1 - \cos 2A}}{{\sin 2A}} - \tan A \\\
We can see double angle trigonometric term so we convert into half of that angle by using identities, sin2A=2sinAcosA \sin 2A = 2\sin A\cos A{\text{ }} and cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A .
1(12sin2A)2sinAcosAtanA 11+2sin2A2sinAcosAtanA 2sin2A2sinAcosAtanA  \Rightarrow \dfrac{{1 - \left( {1 - 2{{\sin }^2}A} \right)}}{{2\sin A\cos A}} - \tan A \\\ \Rightarrow \dfrac{{1 - 1 + 2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\\ \Rightarrow \dfrac{{2{{\sin }^2}A}}{{2\sin A\cos A}} - \tan A \\\
Cancel 2sinA from numerator as well as denominator,
sinAcosAtanA\Rightarrow \dfrac{{\sin A}}{{\cos A}} - \tan A
As we know, sinAcosA=tanA\dfrac{{\sin A}}{{\cos A}} = \tan A
tanAtanA 0  \Rightarrow \tan A - \tan A \\\ \Rightarrow 0 \\\
So, the value of cosec2Acot2AtanA\cos ec2A - \cot 2A - \tan A is 0.

Note- We can solve any trigonometric problem at least two ways by using different identities. First way we already mentioned above and in second way, we use trigonometric identity tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}} and also use tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} .
Now, cosec2Acot2AtanA\cos ec 2A - \cot 2A - \tan A
We can write as, cosec2A(1tan2A+tanA)\cos ec 2A - \left( {\dfrac{1}{{\tan 2A}} + \tan A} \right)
We use tan2A=2tanA1tan2A\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}
cosec2A(1tan2A2tanA+tanA) cosec2A(1tan2A+2tan2A2tanA) cosec2A(1+tan2A2tanA)  \Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A}}{{2\tan A}} + \tan A} \right) \\\ \Rightarrow \cos ec 2A - \left( {\dfrac{{1 - {{\tan }^2}A + 2{{\tan }^2}A}}{{2\tan A}}} \right) \\\ \Rightarrow \cos ec 2A - \left( {\dfrac{{1 + {{\tan }^2}A}}{{2\tan A}}} \right) \\\
Now use, tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}}
cosec2A(sin2A+cos2A2sinAcosA)\Rightarrow \cos ec 2A - \left( {\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{2\sin A\cos A}}} \right)
As we know, sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
cosec2A(12sinAcosA)\Rightarrow \cos ec 2A - \left( {\dfrac{1}{{2\sin A\cos A}}} \right)
We know, sin2A=2sinAcosA \sin 2A = 2\sin A\cos A{\text{ }}
cosec2A1sin2A cosec2Acosec2A 0  \Rightarrow \cos ec 2A - \dfrac{1}{{\sin 2A}} \\\ \Rightarrow \cos ec 2A - \cos ec2A \\\ \Rightarrow 0 \\\