Solveeit Logo

Question

Question: The value of \(f(y) + f\left( \frac{1}{y} \right)f(x) = \log\left\lbrack \frac{1 + x}{1 - x} \right\...

The value of f(y)+f(1y)f(x)=log[1+x1x],f(y) + f\left( \frac{1}{y} \right)f(x) = \log\left\lbrack \frac{1 + x}{1 - x} \right\rbrack, , n ∈ N and [.] is G.I.F.

A

–1

B

0

C

+1

D

Does not exist

Answer

–1

Explanation

Solution

limx\lim _ { x \rightarrow \infty } =limx\lim _ { x \rightarrow \infty }

limx\lim _ { x \rightarrow \infty } 1xnnxn111\frac { \frac { 1 } { \mathrm { x } ^ { \mathrm { n } } } \cdot n \mathrm { x } ^ { \mathrm { n } - 1 } - 1 } { 1 } =limx\lim _ { x \rightarrow \infty } nx11\frac { \frac { \mathrm { n } } { \mathrm { x } } - 1 } { 1 } = – 1