Solveeit Logo

Question

Question: The value of \(\frac{\tan x}{\tan 3x}\)when ever defined never lie between...

The value of tanxtan3x\frac{\tan x}{\tan 3x}when ever defined never lie between

A

13\frac{1}{3}and 3

B

14\frac{1}{4} and 4

C

15\frac{1}{5} and 5

D

5 and 6

Answer

13\frac{1}{3}and 3

Explanation

Solution

Let, y=tanxtan3x=tanx3tanxtan3x13tan2xy = \frac{\tan x}{\tan 3x} = \frac{\tan x}{\frac{3\tan x - \tan^{3}x}{1 - 3\tan^{2}x}}

y=13tan2x3tan2x=13tan2x113tan2xy = \frac{1 - 3\tan^{2}x}{3 - \tan^{2}x} = \frac{\frac{1}{3} - \tan^{2}x}{1 - \frac{1}{3}\tan^{2}x}

Hence, y should never lie between 13\frac{1}{3} and 3 whenever defined