Solveeit Logo

Question

Question: The value of \(\frac{5}{4} = - \frac{3}{4}A \Rightarrow\)...

The value of 54=34A\frac{5}{4} = - \frac{3}{4}A \Rightarrow

A

\therefore

B

531(2x1)+131(x+1)+1x1- \frac{5}{3}\frac{1}{(2x - 1)} + \frac{1}{3}\frac{1}{(x + 1)} + \frac{1}{x - 1}

C

ax1=x(2+x)(1x+x2)=3x1ax - 1 = x(2 + x) - (1 - x + x^{2}) = 3x - 1

D

None of these

Answer

531(2x1)+131(x+1)+1x1- \frac{5}{3}\frac{1}{(2x - 1)} + \frac{1}{3}\frac{1}{(x + 1)} + \frac{1}{x - 1}

Explanation

Solution

A=log2log2log4256A = \log_{2}{\log_{2}{\log_{4}2}}56

= 2log21/222{\log_{2}{}_{1/2}}2= =log2log2log444+2×1(1/2)log22= \log_{2}{\log_{2}{\log_{4}4^{4}}} + 2 \times \frac{1}{(1/2)}\log_{2}2

= =log2log24+4=log2log222+4= \log_{2}{\log_{2}4} + 4 = \log_{2}{\log_{2}2^{2}} + 4.