Solveeit Logo

Question

Question: The value of $\frac{4}{2\cos^2\frac{\pi}{7}-\cos\frac{\pi}{7}-1}$ is...

The value of 42cos2π7cosπ71\frac{4}{2\cos^2\frac{\pi}{7}-\cos\frac{\pi}{7}-1} is

Answer

-16cos(π/7)

Explanation

Solution

Let the given expression be EE. E=42cos2π7cosπ71E = \frac{4}{2\cos^2\frac{\pi}{7}-\cos\frac{\pi}{7}-1}

Let x=cosπ7x = \cos\frac{\pi}{7}. The denominator is 2x2x12x^2 - x - 1. We can factor the quadratic expression 2x2x12x^2 - x - 1. The roots of 2x2x1=02x^2 - x - 1 = 0 are x=(1)±(1)24(2)(1)2(2)=1±1+84=1±34x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(2)(-1)}}{2(2)} = \frac{1 \pm \sqrt{1+8}}{4} = \frac{1 \pm 3}{4}. The roots are x1=1+34=1x_1 = \frac{1+3}{4} = 1 and x2=134=12x_2 = \frac{1-3}{4} = -\frac{1}{2}. So, 2x2x1=2(x1)(x+12)=(x1)(2x+1)2x^2 - x - 1 = 2(x-1)(x+\frac{1}{2}) = (x-1)(2x+1).

Substitute x=cosπ7x = \cos\frac{\pi}{7} back: The denominator is (cosπ71)(2cosπ7+1)(\cos\frac{\pi}{7}-1)(2\cos\frac{\pi}{7}+1). So the expression becomes: E=4(cosπ71)(2cosπ7+1)E = \frac{4}{(\cos\frac{\pi}{7}-1)(2\cos\frac{\pi}{7}+1)}

Now, let's establish a key identity related to cosπ7\cos\frac{\pi}{7}. Consider the identity cos(4θ)=cos(3θ)\cos(4\theta) = -\cos(3\theta) for θ=π7\theta = \frac{\pi}{7}. This is true because cos(4π7)=cos(π3π7)=cos(3π7)\cos(4\frac{\pi}{7}) = \cos(\pi - 3\frac{\pi}{7}) = -\cos(3\frac{\pi}{7}). Using the multiple angle formulas: cos(4θ)=2cos2(2θ)1\cos(4\theta) = 2\cos^2(2\theta) - 1 cos(3θ)=4cos3θ3cosθ\cos(3\theta) = 4\cos^3\theta - 3\cos\theta Let x=cosθ=cosπ7x = \cos\theta = \cos\frac{\pi}{7}. Then cos(2θ)=2x21\cos(2\theta) = 2x^2 - 1. So, 2(2x21)21=(4x33x)2(2x^2-1)^2 - 1 = -(4x^3-3x). 2(4x44x2+1)1=4x3+3x2(4x^4 - 4x^2 + 1) - 1 = -4x^3 + 3x. 8x48x2+21=4x3+3x8x^4 - 8x^2 + 2 - 1 = -4x^3 + 3x. 8x48x2+1=4x3+3x8x^4 - 8x^2 + 1 = -4x^3 + 3x. Rearranging the terms, we get: 8x4+4x38x23x+1=08x^4 + 4x^3 - 8x^2 - 3x + 1 = 0.

We know that x=cosπ7x=\cos\frac{\pi}{7} is a root of this polynomial. The roots of 8x4+4x38x23x+1=08x^4+4x^3-8x^2-3x+1 = 0 are cos(π/7),cos(3π/7),cos(5π/7),cos(7π/7)=1\cos(\pi/7), \cos(3\pi/7), \cos(5\pi/7), \cos(7\pi/7) = -1. So (x+1)(x+1) is a factor. 8x4+4x38x23x+1=(x+1)(8x34x24x+1)=08x^4+4x^3-8x^2-3x+1 = (x+1)(8x^3-4x^2-4x+1) = 0. Since x=cosπ71x=\cos\frac{\pi}{7} \neq -1, it implies that 8x34x24x+1=08x^3-4x^2-4x+1 = 0. So, 8cos3π74cos2π74cosπ7+1=08\cos^3\frac{\pi}{7}-4\cos^2\frac{\pi}{7}-4\cos\frac{\pi}{7}+1 = 0.

Now, let's consider the denominator again: D=(cosπ71)(2cosπ7+1)D = (\cos\frac{\pi}{7}-1)(2\cos\frac{\pi}{7}+1). We need to simplify DD. Let's use the identity 2cos2θ1=cos(2θ)2\cos^2\theta-1 = \cos(2\theta). The denominator can be written as: 2cos2π7cosπ71=(2cos2π71)cosπ7=cos2π7cosπ72\cos^2\frac{\pi}{7}-\cos\frac{\pi}{7}-1 = (2\cos^2\frac{\pi}{7}-1) - \cos\frac{\pi}{7} = \cos\frac{2\pi}{7} - \cos\frac{\pi}{7}.

So the expression is: E=4cos2π7cosπ7E = \frac{4}{\cos\frac{2\pi}{7} - \cos\frac{\pi}{7}} We use the product-to-sum identity: 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos(A-B) - \cos(A+B). Let A=2π7A = \frac{2\pi}{7} and B=π7B = \frac{\pi}{7}. Then cos2π7cosπ7=2sin(2π7+π72)sin(2π7π72)\cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = -2\sin\left(\frac{\frac{2\pi}{7}+\frac{\pi}{7}}{2}\right)\sin\left(\frac{\frac{2\pi}{7}-\frac{\pi}{7}}{2}\right) =2sin(3π14)sin(π14)= -2\sin\left(\frac{3\pi}{14}\right)\sin\left(\frac{\pi}{14}\right).

So, E=42sin3π14sinπ14=2sin3π14sinπ14E = \frac{4}{-2\sin\frac{3\pi}{14}\sin\frac{\pi}{14}} = \frac{-2}{\sin\frac{3\pi}{14}\sin\frac{\pi}{14}}. Using the product-to-sum identity again for the denominator: sin3π14sinπ14=12[cos(3π14π14)cos(3π14+π14)]\sin\frac{3\pi}{14}\sin\frac{\pi}{14} = \frac{1}{2}\left[\cos\left(\frac{3\pi}{14}-\frac{\pi}{14}\right) - \cos\left(\frac{3\pi}{14}+\frac{\pi}{14}\right)\right] =12[cos2π14cos4π14]=12[cosπ7cos2π7]= \frac{1}{2}\left[\cos\frac{2\pi}{14} - \cos\frac{4\pi}{14}\right] = \frac{1}{2}\left[\cos\frac{\pi}{7} - \cos\frac{2\pi}{7}\right].

Substitute this back into EE: E=212[cosπ7cos2π7]=4cosπ7cos2π7=4cos2π7cosπ7E = \frac{-2}{\frac{1}{2}\left[\cos\frac{\pi}{7} - \cos\frac{2\pi}{7}\right]} = \frac{-4}{\cos\frac{\pi}{7} - \cos\frac{2\pi}{7}} = \frac{4}{\cos\frac{2\pi}{7} - \cos\frac{\pi}{7}} This is the same expression. We need to find the value of cos2π7cosπ7\cos\frac{2\pi}{7} - \cos\frac{\pi}{7}.

Let's use the identity 8x34x24x+1=08x^3-4x^2-4x+1=0 where x=cosπ7x=\cos\frac{\pi}{7}. We know that cos2π7=2cos2π71=2x21\cos\frac{2\pi}{7} = 2\cos^2\frac{\pi}{7}-1 = 2x^2-1. The expression in the denominator is cos2π7cosπ7=(2x21)x=2x2x1\cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = (2x^2-1) - x = 2x^2-x-1. This brings us back to the original denominator.

Let's use a different set of identities. Consider the sum S=cosπ7+cos3π7+cos5π7S = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}. We know that cos5π7=cos(π2π7)=cos2π7\cos\frac{5\pi}{7} = \cos(\pi - \frac{2\pi}{7}) = -\cos\frac{2\pi}{7}. So S=cosπ7+cos3π7cos2π7S = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} - \cos\frac{2\pi}{7}.

Let's use the identity 1+2k=1ncos(2kθ)=sin((2n+1)θ)sinθ1+2\sum_{k=1}^n \cos(2k\theta) = \frac{\sin((2n+1)\theta)}{\sin\theta}. For θ=π7\theta=\frac{\pi}{7}, n=3n=3: 1+2(cos2π7+cos4π7+cos6π7)=sin(7π7)sin(π7)=sinπsin(π7)=01+2(\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{6\pi}{7}) = \frac{\sin(\frac{7\pi}{7})}{\sin(\frac{\pi}{7})} = \frac{\sin\pi}{\sin(\frac{\pi}{7})} = 0. 1+2cos2π7+2cos4π7+2cos6π7=01 + 2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = 0. We know cos4π7=cos3π7\cos\frac{4\pi}{7} = -\cos\frac{3\pi}{7} and cos6π7=cosπ7\cos\frac{6\pi}{7} = -\cos\frac{\pi}{7}. So, 1+2cos2π72cos3π72cosπ7=01 + 2\cos\frac{2\pi}{7} - 2\cos\frac{3\pi}{7} - 2\cos\frac{\pi}{7} = 0. Divide by 2: 12+cos2π7cos3π7cosπ7=0\frac{1}{2} + \cos\frac{2\pi}{7} - \cos\frac{3\pi}{7} - \cos\frac{\pi}{7} = 0. This implies cosπ7+cos3π7cos2π7=12\cos\frac{\pi}{7} + \cos\frac{3\pi}{7} - \cos\frac{2\pi}{7} = \frac{1}{2}. This is the value of SS we were looking for.

Now, let's look at the denominator of our original expression D=cos2π7cosπ7D = \cos\frac{2\pi}{7} - \cos\frac{\pi}{7}. From the identity 1+2cos2π72cos3π72cosπ7=01 + 2\cos\frac{2\pi}{7} - 2\cos\frac{3\pi}{7} - 2\cos\frac{\pi}{7} = 0: 1+2(cos2π7cosπ7)2cos3π7=01 + 2(\cos\frac{2\pi}{7} - \cos\frac{\pi}{7}) - 2\cos\frac{3\pi}{7} = 0. 1+2D2cos3π7=01 + 2D - 2\cos\frac{3\pi}{7} = 0. This means 2D=2cos3π712D = 2\cos\frac{3\pi}{7} - 1. So D=cos3π712D = \cos\frac{3\pi}{7} - \frac{1}{2}.

This doesn't seem to simplify to a simple integer.

Let's use the known value cosπ7+cos2π7+cos3π7=12\cos\frac{\pi}{7} + \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \frac{1}{2}. We need to evaluate 42cos2π7cosπ71=4cos2π7cosπ7\frac{4}{2\cos^2\frac{\pi}{7}-\cos\frac{\pi}{7}-1} = \frac{4}{\cos\frac{2\pi}{7} - \cos\frac{\pi}{7}}.

From cosπ7+cos3π7cos2π7=12\cos\frac{\pi}{7}+\cos\frac{3\pi}{7}-\cos\frac{2\pi}{7} = \frac{1}{2}, we can write: cos2π7cosπ7=cos3π712\cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = \cos\frac{3\pi}{7} - \frac{1}{2}. So, E=4cos3π712E = \frac{4}{\cos\frac{3\pi}{7} - \frac{1}{2}}.

Let's test the identity 4cos3π74cosπ7+1=04\cos^3\frac{\pi}{7}-4\cos\frac{\pi}{7}+1 = 0 derived earlier. Let's re-derive the polynomial for cos(π/7)\cos(\pi/7). From 1+2cos2π7+2cos4π7+2cos6π7=01 + 2\cos\frac{2\pi}{7} + 2\cos\frac{4\pi}{7} + 2\cos\frac{6\pi}{7} = 0. Let x=cosπ7x = \cos\frac{\pi}{7}.

Let's use the identity 2cos(A)cos(B)=cos(A+B)+cos(AB)2\cos(A)\cos(B) = \cos(A+B) + \cos(A-B). Consider the denominator D=cos2π7cosπ7D = \cos\frac{2\pi}{7} - \cos\frac{\pi}{7}. We know cos(2A)cos(A)=2sin(3A/2)sin(A/2)\cos(2A) - \cos(A) = -2\sin(3A/2)\sin(A/2). D=2sin3π14sinπ14D = -2\sin\frac{3\pi}{14}\sin\frac{\pi}{14}. And the expression is E=42sin3π14sinπ14=2sin3π14sinπ14E = \frac{4}{-2\sin\frac{3\pi}{14}\sin\frac{\pi}{14}} = \frac{-2}{\sin\frac{3\pi}{14}\sin\frac{\pi}{14}}. We also know sin3π14=cos(π23π14)=cos4π14=cos2π7\sin\frac{3\pi}{14} = \cos(\frac{\pi}{2}-\frac{3\pi}{14}) = \cos\frac{4\pi}{14} = \cos\frac{2\pi}{7}. And sinπ14=cos(π2π14)=cos6π14=cos3π7\sin\frac{\pi}{14} = \cos(\frac{\pi}{2}-\frac{\pi}{14}) = \cos\frac{6\pi}{14} = \cos\frac{3\pi}{7}. So, E=2cos2π7cos3π7E = \frac{-2}{\cos\frac{2\pi}{7}\cos\frac{3\pi}{7}}.

We know cosπ7cos2π7cos3π7=18\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{3\pi}{7} = \frac{1}{8}. So cos2π7cos3π7=18cosπ7\cos\frac{2\pi}{7}\cos\frac{3\pi}{7} = \frac{1}{8\cos\frac{\pi}{7}}. E=218cosπ7=16cosπ7E = \frac{-2}{\frac{1}{8\cos\frac{\pi}{7}}} = -16\cos\frac{\pi}{7}.

This is a specific value. Let's check if this is correct. The value of cosπ7\cos\frac{\pi}{7} is approximately 0.90.9. So 16×0.9=14.4-16 \times 0.9 = -14.4. This is a numerical answer. The problem typically expects an integer or a simple rational number.

The most simplified form is 16cos(π/7)-16\cos(\pi/7).

Final answer is 16cosπ7\boxed{-16\cos\frac{\pi}{7}}