Solveeit Logo

Question

Question: The value of \(\frac{2\frac{1}{2}}{1!} + \frac{3\frac{1}{2}}{2!} + \frac{4\frac{1}{2}}{3!} + \frac{5...

The value of 2121!+3122!+4123!+5124!+......\frac{2\frac{1}{2}}{1!} + \frac{3\frac{1}{2}}{2!} + \frac{4\frac{1}{2}}{3!} + \frac{5\frac{1}{2}}{4!} + ......\infty is.

A

1+e1 + e

B

1+ee\frac{1 + e}{e}

C

e1e\frac{e - 1}{e}

D

None of these

Answer

None of these

Explanation

Solution

The series is

12x2+23x3+34x4+......=\frac{1}{2}x^{2} + \frac{2}{3}x^{3} + \frac{3}{4}x^{4} + ......\infty =

={21!+32!+.+n+1n!+}+= \left\{ \frac { 2 } { 1 ! } + \frac { 3 } { 2 ! } + \ldots . + \frac { n + 1 } { n ! } + \ldots \infty \right\} + x1+x+loge(1x)\frac{x}{1 + x} + \log_{e}(1 - x)

x1xloge(1x)\frac{x}{1 - x} - \log_{e}(1 - x).