Solveeit Logo

Question

Question: The value of \(= \frac{1}{x^{2} - x + 1} - \frac{1}{x^{2} + x + 1}\)is....

The value of =1x2x+11x2+x+1= \frac{1}{x^{2} - x + 1} - \frac{1}{x^{2} + x + 1}is.

A

\Rightarrow

B

a=3,a+b=5b=2a = 3,a + b = 5 \Rightarrow b = 2

C

\therefore

D

(a,b)=(3,2)(a,b) = (3,2)

Answer

\therefore

Explanation

Solution

(1+x)1=logabca(1 + x)^{- 1} = \log_{abc}a

(1+x)1+(1+y)1+(1+z)1=logabca+logabcb+logabcc(1 + x)^{- 1} + (1 + y)^{- 1} + (1 + z)^{- 1} = \log_{abc}a + \log_{abc}b + \log_{abc}c