Solveeit Logo

Question

Question: The value of \(\frac{1}{81^{n}}\)–\(\frac{10}{81^{n}}\)<sup>2n</sup>C<sub>1</sub> +\(\frac{10^{2}}{8...

The value of 181n\frac{1}{81^{n}}1081n\frac{10}{81^{n}}2nC1 +10281n\frac{10^{2}}{81^{n}}2nC210381n\frac{10^{3}}{81^{n}}2nC3 +....+ 102n81n\frac{10^{2n}}{81^{n}} is –

A

2

B

0

C

½

D

1

Answer

1

Explanation

Solution

181n\frac{1}{81^{n}}1081n\frac{10}{81^{n}}2nC1 + 10281n\frac{10^{2}}{81^{n}}2nC210381n\frac{10^{3}}{81^{n}} 2nC3 + ..... + 102n81n\frac{10^{2n}}{81^{n}}

= 181n\frac{1}{81^{n}} [2nC02nC1 10 + 2nC2 1022nC3 103 + ....... + 2nC2n 102n]

= 181n\frac{1}{81^{n}} (1 – 10)2n = (9)2n(92)n\frac{( - 9)^{2n}}{(9^{2})^{n}} = (1)2n92n92n\frac{( - 1)^{2n}9^{2n}}{9^{2n}}= 1