Solveeit Logo

Question

Question: The value of $\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{99}{100!}$ is equal to...

The value of 12!+23!++99100!\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{99}{100!} is equal to

Answer

1 - \frac{1}{100!}

Explanation

Solution

The given series is S=12!+23!++99100!S = \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{99}{100!}.

We can identify the general term of the series. The nn-th term of the series can be written as Tn=n(n+1)!T_n = \frac{n}{(n+1)!}. The sum is for nn ranging from 11 to 9999.

Let's rewrite the general term TnT_n by manipulating the numerator: Tn=n(n+1)!T_n = \frac{n}{(n+1)!} We can write nn as (n+1)1(n+1) - 1. So, Tn=(n+1)1(n+1)!T_n = \frac{(n+1) - 1}{(n+1)!}

Now, split the fraction into two parts: Tn=n+1(n+1)!1(n+1)!T_n = \frac{n+1}{(n+1)!} - \frac{1}{(n+1)!}

Simplify the first part: n+1(n+1)!=n+1(n+1)n!=1n!\frac{n+1}{(n+1)!} = \frac{n+1}{(n+1) \cdot n!} = \frac{1}{n!}. So, the general term becomes: Tn=1n!1(n+1)!T_n = \frac{1}{n!} - \frac{1}{(n+1)!}

This form is characteristic of a telescoping series. Let's write out the terms of the sum: For n=1n=1: T1=11!12!T_1 = \frac{1}{1!} - \frac{1}{2!} For n=2n=2: T2=12!13!T_2 = \frac{1}{2!} - \frac{1}{3!} For n=3n=3: T3=13!14!T_3 = \frac{1}{3!} - \frac{1}{4!} ... For n=99n=99: T99=199!1100!T_{99} = \frac{1}{99!} - \frac{1}{100!}

Now, sum all these terms: S=T1+T2+T3++T99S = T_1 + T_2 + T_3 + \dots + T_{99} S=(11!12!)+(12!13!)+(13!14!)++(199!1100!)S = \left(\frac{1}{1!} - \frac{1}{2!}\right) + \left(\frac{1}{2!} - \frac{1}{3!}\right) + \left(\frac{1}{3!} - \frac{1}{4!}\right) + \dots + \left(\frac{1}{99!} - \frac{1}{100!}\right)

In this sum, the intermediate terms cancel each other out: The 12!-\frac{1}{2!} from T1T_1 cancels with the +12!+\frac{1}{2!} from T2T_2. The 13!-\frac{1}{3!} from T2T_2 cancels with the +13!+\frac{1}{3!} from T3T_3. This pattern continues until the second-to-last term.

The only terms that remain are the first part of the first term and the second part of the last term: S=11!1100!S = \frac{1}{1!} - \frac{1}{100!} Since 1!=11! = 1, we have: S=11100!S = 1 - \frac{1}{100!}